| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 4 / 4
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Structural roles and gender disparities in corruption networks
Arthur A. B. Pessa, Alvaro F. Martins, Mônica V. Prates, Sebastián Gonçalves, Cristina Masoller, Matjaž Perc, Haroldo V. Ribeiro, 2025, izvirni znanstveni članek

Opis: Criminal activities are predominantly due to males, with females exhibiting a significantly lower involvement, especially in serious offenses. This pattern extends to organized crime, where females are often perceived as less tolerant to illegal practices. However, the roles of males and females within corruption networks are less understood. Here, we analyze data from political scandals in Brazil and Spain to shed light on gender differences in corruption networks. Our findings reveal that females constitute 10% and 20% of all agents in the Brazilian and Spanish corruption networks, respectively, with these proportions remaining stable over time and across different scandal sizes. Despite this disparity in representation, centrality measures are comparable between genders, except among highly central individuals, for which males are further overrepresented. Additionally, gender has no significant impact on network resilience, whether through random dismantling or targeted attacks on the largest component. Males are more likely to be involved in multiple scandals than females, and scandals predominantly involving females are rare, though these differences are explained by a null network model in which gender is randomly assigned while maintaining gender proportions. Our results further reveal that the underrepresentation of females partially explains gender homophily in network associations, although in the Spanish network, male-to-male connections exceed expectations derived from a null model.
Ključne besede: gender disparity, corruption network, political scandal, social physics, social physics
Objavljeno v DKUM: 25.04.2025; Ogledov: 0; Prenosov: 0
.pdf Celotno besedilo (3,50 MB)
Gradivo ima več datotek! Več...

2.
Universality of political corruption networks
Alvaro F. Martins, Bruno R. da Cunha, Quentin S. Hanley, Sebastián Gonçalves, Matjaž Perc, Haroldo V. Ribeiro, 2022, izvirni znanstveni članek

Opis: Corruption crimes demand highly coordinated actions among criminal agents to succeed. But research dedicated to corruption networks is still in its infancy and indeed little is known about the properties of these networks. Here we present a comprehensive investigation of corruption networks related to political scandals in Spain and Brazil over nearly three decades. We show that corruption networks of both countries share universal structural and dynamical properties, including similar degree distributions, clustering and assortativity coefficients, modular structure, and a growth process that is marked by the coalescence of network components due to a few recidivist criminals. We propose a simple model that not only reproduces these empirical properties but reveals also that corruption networks operate near a critical recidivism rate below which the network is entirely fragmented and above which it is overly connected. Our research thus indicates that actions focused on decreasing corruption recidivism may substantially mitigate this type of organized crime.
Ključne besede: corruption, network, politics, universality, social physics
Objavljeno v DKUM: 15.07.2024; Ogledov: 119; Prenosov: 13
.pdf Celotno besedilo (7,26 MB)
Gradivo ima več datotek! Več...

3.
Deep learning criminal networks
Haroldo V. Ribeiro, Diego D. Lopes, Arthur A. B. Pessa, Alvaro F. Martins, Bruno R. da Cunha, Sebastián Gonçalves, Ervin K. Lenzi, Quentin S. Hanley, Matjaž Perc, 2023, izvirni znanstveni članek

Opis: Recent advances in deep learning methods have enabled researchers to develop and apply algorithms for the analysis and modeling of complex networks. These advances have sparked a surge of interest at the interface between network science and machine learning. Despite this, the use of machine learning methods to investigate criminal networks remains surprisingly scarce. Here, we explore the potential of graph convolutional networks to learn patterns among networked criminals and to predict various properties of criminal networks. Using empirical data from political corruption, criminal police intelligence, and criminal financial networks, we develop a series of deep learning models based on the GraphSAGE framework that are able to recover missing criminal partnerships, distinguish among types of associations, predict the amount of money exchanged among criminal agents, and even anticipate partnerships and recidivism of criminals during the growth dynamics of corruption networks, all with impressive accuracy. Our deep learning models significantly outperform previous shallow learning approaches and produce high-quality embeddings for node and edge properties. Moreover, these models inherit all the advantages of the GraphSAGE framework, including the generalization to unseen nodes and scaling up to large graph structures.
Ključne besede: organized crime, complexity, crime prediction, GraphSAGE
Objavljeno v DKUM: 20.06.2024; Ogledov: 236; Prenosov: 18
.pdf Celotno besedilo (2,36 MB)
Gradivo ima več datotek! Več...

4.
Machine learning partners in criminal networks
Diego D. Lopes, Bruno R. da Cunha, Alvaro F. Martins, Sebastián Gonçalves, Ervin K. Lenzi, Quentin S. Hanley, Matjaž Perc, Haroldo V. Ribeiro, 2022, izvirni znanstveni članek

Opis: Recent research has shown that criminal networks have complex organizational structures, but whether this can be used to predict static and dynamic properties of criminal networks remains little explored. Here, by combining graph representation learning and machine learning methods, we show that structural properties of political corruption, police intelligence, and money laundering networks can be used to recover missing criminal partnerships, distinguish among diferent types of criminal and legal associations, as well as predict the total amount of money exchanged among criminal agents, all with outstanding accuracy. We also show that our approach can anticipate future criminal associations during the dynamic growth of corruption networks with signifcant accuracy. Thus, similar to evidence found at crime scenes, we conclude that structural patterns of criminal networks carry crucial information about illegal activities, which allows machine learning methods to predict missing information and even anticipate future criminal behavior.
Ključne besede: machine learning, crime, network, social physics
Objavljeno v DKUM: 28.05.2024; Ogledov: 655; Prenosov: 12
.pdf Celotno besedilo (2,42 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.04 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici