| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 5 / 5
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Enhancing trust in automated 3D point cloud data interpretation through explainable counterfactuals
Andreas Holzinger, Niko Lukač, Dzemail Rozajac, Emil Johnston, Veljka Kočić, Bernhard Hoerl, Christoph Gollob, Arne Nothdurft, Karl Stampfer, Stefan Schweng, Javier Del Ser, 2025, izvirni znanstveni članek

Opis: This paper introduces a novel framework for augmenting explainability in the interpretation of point cloud data by fusing expert knowledge with counterfactual reasoning. Given the complexity and voluminous nature of point cloud datasets, derived predominantly from LiDAR and 3D scanning technologies, achieving interpretability remains a significant challenge, particularly in smart cities, smart agriculture, and smart forestry. This research posits that integrating expert knowledge with counterfactual explanations – speculative scenarios illustrating how altering input data points could lead to different outcomes – can significantly reduce the opacity of deep learning models processing point cloud data. The proposed optimization-driven framework utilizes expert-informed ad-hoc perturbation techniques to generate meaningful counterfactual scenarios when employing state-of-the-art deep learning architectures. The optimization process minimizes a multi-criteria objective comprising counterfactual metrics such as similarity, validity, and sparsity, which are specifically tailored for point cloud datasets. These metrics provide a quantitative lens for evaluating the interpretability of the counterfactuals. Furthermore, the proposed framework allows for the definition of explicit interpretable counterfactual perturbations at its core, thereby involving the audience of the model in the counterfactual generation pipeline and ultimately, improving their overall trust in the process. Results demonstrate a notable improvement in both the interpretability of the model’s decisions and the actionable insights delivered to end-users. Additionally, the study explores the role of counterfactual reasoning, coupled with expert input, in enhancing trustworthiness and enabling human-in-the-loop decision-making processes. By bridging the gap between complex data interpretations and user comprehension, this research advances the field of explainable AI, contributing to the development of transparent, accountable, and human-centered artificial intelligence systems.
Ključne besede: explainable AI, point cloud data, counterfactual reasoning, information fusion, interpretability, human-centered AI
Objavljeno v DKUM: 06.03.2025; Ogledov: 0; Prenosov: 5
.htm Celotno besedilo (186,97 KB)

2.
Efficiency of soil and fertilizer phosphorus use : reconciling changing concepts of soil phosphorus behaviour with agronomic information
John Keith Syers, A.E. Johnston, David Y. Curtin, 2008

Opis: The efficient use of phosphorus (P) is essential to many agricultural and environmental issues. This bulletin reviews, analyzes and synthesizes information on the efficient use of soil and fertilizer P. It presents information on the plant availability of soil and fertilizer P, with an emphasis on soil plant interactions. The focus is on the changing concepts of the behavior of both soil and fertilizer P and on the need to define and assess their recovery and, thus, P-use efficiency more appropriately.--Publisher's description.
Ključne besede: gnojila, fosfatna gnojila, fosfor, kmetijstvo
Objavljeno v DKUM: 10.07.2015; Ogledov: 1051; Prenosov: 58
URL Povezava na celotno besedilo

3.
4.
5.
Econometric methods
John Johnston, John Enrico DiNardo, 1997, strokovno delo

Objavljeno v DKUM: 01.06.2012; Ogledov: 1250; Prenosov: 38
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.05 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici