| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 70
Na začetekNa prejšnjo stran1234567Na naslednjo stranNa konec
1.
Interaktivno upodabljanje digitalnega modela reliefa s štiriškim drevesom
Anej Krajnc, 2025, diplomsko delo

Opis: Diplomsko delo opisuje implementacijo upodabljanja digitalnega modela reliefa s štiriškim drevesom, trikotniško mrežo, z Blinn-Phongovo osvetlitvijo in sivinsko barvo. Cilj je pohitriti prikaz digitalnega modela reliefa s štiriškim drevesom. Ugotovili smo, da je prikaz s štiriškim drevesom hitrejši od prikaza celotnega modela reliefa, vendar ima večjo pomnilniško zahtevnost. Hitrost izrisa je odvisna tudi od števila oglišč, kar smo ugotovili z uporabo treh digitalnih modelov reliefa z različnim številom oglišč.
Ključne besede: štiriško drevo, digitalni model reliefa, trikotniška mreža, Blinn-Phongov osvetlitveni model, OpenGL
Objavljeno v DKUM: 08.05.2025; Ogledov: 0; Prenosov: 3
.pdf Celotno besedilo (1,61 MB)

2.
Mobilna aplikacija za pretvorbo slik iz formata raw v format png s pomočjo strojnega učenja
Uroš Mravljak, 2025, diplomsko delo

Opis: V diplomskem delu je prikazan razvoj aplikacije za pretvorbo slik formata RAW v format PNG, pri čemer uporabljamo dva pristopa. Prvi temelji na standardnih algoritmih za pretvorbo slik, drugi pa na strojnem učenju, kar pomeni, da je bil model naučen čim bolj natančno pretvarjati sliko iz enega formata v drugega. Ta aplikacija dobro služi fotografom, ki zajemajo slike v formatu RAW, saj jih lahko na svojem mobilnem telefonu pretvorijo kar na poti. Na koncu sta sledili primerjava in analiza rezultatov za ugotavljanje, kateri postopek prinaša boljše rezultate. Za učenje modela je bilo uporabljenih 16 različnih slik, algoritem pa je bil implementiran s pomočjo knjižnic. Pretvorba z algoritmom je poskrbela za kvalitetnejše slike, vendar je bila pretvorba z modelom včasih hitrejša. Pretvorjene slike so bile primerjane z metrikama PSNR in SSIM ter analizirane.
Ključne besede: raw, png, slika, pretvorba, strojno učenje
Objavljeno v DKUM: 08.05.2025; Ogledov: 0; Prenosov: 9
.pdf Celotno besedilo (2,93 MB)

3.
A hierarchical universal algorithm for geometric objects’ reflection symmetry detection
Borut Žalik, Damjan Strnad, Štefan Kohek, Ivana Kolingerová, Andrej Nerat, Niko Lukač, David Podgorelec, 2022, izvirni znanstveni članek

Opis: A new algorithm is presented for detecting the global reflection symmetry of geometric objects. The algorithm works for 2D and 3D objects which may be open or closed and may or may not contain holes. The algorithm accepts a point cloud obtained by sampling the object’s surface at the input. The points are inserted into a uniform grid and so-called boundary cells are identified. The centroid of the boundary cells is determined, and a testing symmetry axis/plane is set through it. In this way, the boundary cells are split into two parts and they are faced with the symmetry estimation function. If the function estimates the symmetric case, the boundary cells are further split until a given threshold is reached or a non-symmetric result is obtained. The new testing axis/plane is then derived and tested by rotation around the centroid. This paper introduces three techniques to accelerate the computation. Competitive results were obtained when the algorithm was compared against the state of the art.
Ključne besede: computer science, computational geometry, uniform subdivision, centroids
Objavljeno v DKUM: 01.04.2025; Ogledov: 0; Prenosov: 4
.pdf Celotno besedilo (2,99 MB)
Gradivo ima več datotek! Več...

4.
STALITA: innovative platform for bank transactions analysis
David Jesenko, Štefan Kohek, Borut Žalik, Matej Brumen, Domen Kavran, Niko Lukač, Andrej Živec, Aleksander Pur, 2022, izvirni znanstveni članek

Opis: Acts of fraud have become much more prevalent in the financial industry with the rise of technology and the continued economic growth in modern society. Fraudsters are evolving their approaches continuously to exploit the vulnerabilities of the current prevention measures in place, many of whom are targeting the financial sector. To overcome and investigate financial frauds, this paper presents STALITA, which is an innovative platform for the analysis of bank transactions. STALITA enables graph-based data analysis using a powerful Neo4j graph database and the Cypher query language. Additionally, a diversity of other supporting tools, such as support for heterogeneous data sources, force-based graph visualisation, pivot tables, and time charts, enable in-depth investigation of the available data. In the Results section, we present the usability of the platform through real-world case scenarios.
Ključne besede: Neo4j, platform, bank transactions, graph analysis, graph visualisation, fraud, investigation
Objavljeno v DKUM: 27.03.2025; Ogledov: 0; Prenosov: 2
.pdf Celotno besedilo (1,44 MB)
Gradivo ima več datotek! Več...

5.
Razvoj 3D resne igre za prepoznavanje kroničnih bolezni z algoritmom iskanja najkrajše poti
Filip Senekovič, 2025, diplomsko delo

Opis: Diplomsko delo opisuje razvoj 3D resne igre za prepoznavanje kroničnih bolezni. V igri ima igralec vlogo pacienta in raziskuje stanovanje ter prepoznava vzroke in simptome kroničnih bolezni. V diplomskem delu se osredotočamo na oblikovanje igralca in scene, interakcijo igralca s sceno ter navigacijo z uporabo algoritma iskanja najkrajše poti. Cilj je ponuditi interaktivno učenje o kroničnih boleznih in poudariti pomen pravočasnega prepoznavanja simptomov ter sprememb življenjskih navad. Rezultati testiranja kažejo, da je izdelana igra dostopna širšemu občinstvu, saj dobro deluje tudi na manj zmogljivih računalnikih. Poleg tega je algoritem iskanja najkrajše poti zmožen igralca v realnem času učinkovito voditi skozi sceno.
Ključne besede: kronične bolezni, resna igra, Unity, algoritem iskanja najkrajše poti
Objavljeno v DKUM: 04.03.2025; Ogledov: 0; Prenosov: 46
.pdf Celotno besedilo (5,71 MB)

6.
Efficient encoding and decoding of voxelized models for machine learning-based applications
Damjan Strnad, Štefan Kohek, Borut Žalik, Libor Váša, Andrej Nerat, 2025, izvirni znanstveni članek

Opis: Point clouds have become a popular training data for many practical applications of machine learning in the fields of environmental modeling and precision agriculture. In order to reduce high space requirements and the effect of noise in the data, point clouds are often transformed to a structured representation such as a voxel grid. Storing, transmitting and consuming voxelized geometry, however, remains a challenging problem for machine learning pipelines running on devices with limited amount of on-chip memory with low access latency. A viable solution is to store the data in a compact encoded format, and perform on-the-fly decoding when it is needed for processing. Such on-demand expansion must be fast in order to avoid introducing substantial additional delay to the pipeline. This can be achieved by parallel decoding, which is particularly suitable for massively parallel architecture of GPUs on which the majority of machine learning is currently executed. In this paper, we present such method for efficient and parallelizable encoding/decoding of voxelized geometry. The method employs multi-level context-aware prediction of voxel occupancy based on the extracted binary feature prediction table, and encodes the residual grid with a pointerless sparse voxel octree (PSVO). We particularly focused on encoding the datasets of voxelized trees, obtained from both synthetic tree models and LiDAR point clouds of real trees. The method achieved 15.6% and 12.8% reduction of storage size with respect to plain PSVO on synthetic and real dataset, respectively. We also tested the method on a general set of diverse voxelized objects, where an average 11% improvement of storage space was achieved.
Ključne besede: voxel grid, feature prediction, tree models, prediction-based encoding, key voxels, residuals, sparse voxel octree
Objavljeno v DKUM: 09.01.2025; Ogledov: 0; Prenosov: 5
.pdf Celotno besedilo (20,93 MB)

7.
A case study on entropy-aware block-based linear transforms for lossless image compression
Borut Žalik, David Podgorelec, Ivana Kolingerová, Damjan Strnad, Štefan Kohek, 2024, izvirni znanstveni članek

Opis: Data compression algorithms tend to reduce information entropy, which is crucial, especially in the case of images, as they are data intensive. In this regard, lossless image data compression is especially challenging. Many popular lossless compression methods incorporate predictions and various types of pixel transformations, in order to reduce the information entropy of an image. In this paper, a block optimisation programming framework is introduced to support various experiments on raster images, divided into blocks of pixels. Eleven methods were implemented within , including prediction methods, string transformation methods, and inverse distance weighting, as a representative of interpolation methods. Thirty-two different greyscale raster images with varying resolutions and contents were used in the experiments. It was shown that reduces information entropy better than the popular JPEG LS and CALIC predictors. The additional information associated with each block in is then evaluated. It was confirmed that, despite this additional cost, the estimated size in bytes is smaller in comparison to the sizes achieved by the JPEG LS and CALIC predictors.
Ključne besede: computer science, information entropy, prediction, inverse distance transform, string transformations
Objavljeno v DKUM: 07.01.2025; Ogledov: 0; Prenosov: 9
.pdf Celotno besedilo (5,13 MB)

8.
Proceedings of the 10th Student Computing Research Symposium : (SCORES'24)
2024, zbornik

Opis: The 2024 Student Computing Research Symposium (SCORES 2024), organized by the Faculty of Electrical Engineering and Computer Science at the University of Maribor (UM FERI) in collabora-tion with the University of Ljubljana and the University of Primorska, showcases innovative student research in computer science. This year’s symposium highlights advancements in fields such as ar-tificial intelligence, data science, machine learning algorithms, computational problem-solving, and healthcare data analysis. The primary goal of SCORES 2024 is to provide a platform for students to present their research, fostering early engagement in academic inquiry. Beyond research presen-tations, the symposium seeks to create an environment where students from different institutions can meet, exchange ideas, and build lasting connections. It aims to cultivate friendships and future research collaborations among emerging scholars. Additionally, the conference offers an opportu-nity for students to interact with senior researchers from institutions beyond their own, promoting mentorship and broader academic networking.
Ključne besede: evaluacija, optimizacija, strojno učenje, podatki, zborniki
Objavljeno v DKUM: 26.11.2024; Ogledov: 0; Prenosov: 77
.pdf Celotno besedilo (35,41 MB)
Gradivo ima več datotek! Več...

9.
Primerjava kodekov za stiskanje videoposnetkov : diplomsko delo
Leon Tikvič, 2024, diplomsko delo

Opis: V diplomskem delu smo primerjali novejše kodeke za stiskanje videoposnetkov, kot so H.264/x264, H.265/x265, H.266/VVenC, AV1/libaom in VP9/libvpx, z namenom identificirati njihove prednosti in slabosti. Osredotočili smo se na vpliv izbire kodekov in nastavljenih parametrov na kakovost slike ter učinkovitost stiskanja. Preučili smo tudi, kako različni tipi videoposnetkov, na primer visoko dinamični posnetki, statični prizori in videi z visoko ločljivostjo, vplivajo na delovanje kodekov. Primerjali smo stopnjo stiskanja, vpliv na velikost datoteke, čas stiskanja in končno kakovost slike. Za merjenje podobnosti smo uporabili metriki PSNR in SSIM. Ugotovitve raziskave ponujajo smernice za izbiro najučinkovitejših rešitev glede na specifične potrebe uporabnikov.
Ključne besede: Kodeki, stiskanje videoposnetkov, primerjava kodekov, H.264, H.265, H.266, AV1, VP9, video kakovost
Objavljeno v DKUM: 14.10.2024; Ogledov: 0; Prenosov: 37
.pdf Celotno besedilo (1,52 MB)

10.
Primerjava učinkovitosti algoritmov za stiskanje slik: heif, jpeg2000, png in webp : diplomsko delo
Siniša Vučetić, 2024, diplomsko delo

Opis: Diplomsko delo analizira učinkovitost štirih formatov za stiskanje slik: PNG, WebP, JPEG2000 in HEIF. Glavni cilj dela je primerjava teh formatov na enakih slikah, da se oceni njihova kakovost po stiskanju, faktor stiskanja ter hitrost stiskanja in razširjanja. Po podrobnem opisu posameznih formatov, delo ponuja analizo in primerjavo rezultatov, pri čemer se HEIF izkaže za najučinkovitejšega v stiskanju, kljub počasnejšem času obdelave. WebP nudi najboljše ravnotežje med učinkovitostjo stiskanja in hitrostjo obdelave, medtem ko se JPEG2000 izkaže za dober kompromis med kakovostjo in faktorjem stiskanja, vendar je počasnejši pri stiskanju in razširjanju.
Ključne besede: PNG, WebP, JPEG2000, HEIF, stiskanje slik
Objavljeno v DKUM: 07.10.2024; Ogledov: 0; Prenosov: 21
.pdf Celotno besedilo (1,54 MB)

Iskanje izvedeno v 0.18 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici