| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 9 / 9
First pagePrevious page1Next pageLast page
1.
2.
3.
4.
5.
6.
7.
8.
9.
Rekurzivna delitev modelov linearne regresije za oceno zanimivosti asociativnih pravil v različnih časovnih obdobjih
Goran Hrovat, 2018, doctoral dissertation

Abstract: Zanimivosti asociativnih pravil ali pogostih množic postavk se lahko skozi čas spreminjajo. Prav tako je lahko njihova zanimivost različna za različne skupine (npr. skupine ljudi). V doktorski disertaciji je predstavljen nov algoritem za določanje zanimivosti asociativnih pravil in množic postavk v različnih časov¬nih obdobjih. Algoritem odkriva skupine pacientov, ki se glede na trend zanimivosti asociativnega pravila statistično značilno razlikujejo. Rezultat algoritma je odločitveno regresijsko drevo, katerega povezave predstavljajo različne skupine pacientov, listi pa prikazujejo grafe z zanimivostmi asociativnega pravila ali množice postavk v različnih časovnih obdobjih. Pokazali smo tudi, da podpora pogoste množice postavk vpliva na kompleksnost zgrajenega regresijskega drevesa. Za demonstracijo smo uporabili elektronske zdravstvene zapise, zbrane v obdobju 15 let, ki predstavljajo odpuste pacientov iz različnih bolnišnic v Združenih državah Amerike. Predstavljeni algoritem predstavlja v tem primeru uporabno vrednost za bolnišnice, zavarovalnice, raziskovalne in ostale institucije, saj jih lahko odkrito znanje vodi do novih spoznanj in optimizacije poslovanja.
Keywords: podatkovno rudarjenje, mere zanimivosti, asociativna pravila, podpora odločanju, regresijsko dre-vo, linearna regresija, elektronski zdravstveni zapis
Published: 12.07.2018; Views: 518; Downloads: 40
.pdf Full text (17,46 MB)

Search done in 0.25 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica