SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 5 / 5
First pagePrevious page1Next pageLast page
1.
2.
Bluetooth platform for wireless measurements using industrial sensors
Kristian Les, Tadej Tašner, Darko Lovrec, 2013, original scientific article

Abstract: The past decade has seen significant advancement in the field of mobile devices. Various smart devices such as cellular phones, tablets and PDAs have become universal tools in our everyday lives. Their versatility is based on their computing power, portability and their integration with other devices and services such as the World Wide Web. However, these smart devices have an even wider usability spectrum. They can also be used for wireless industrial measurements using existing sensors. The wireless connectivity of existing industrial sensors is achieved by equipping them with a Bluetooth module, which digitizes the data and passes it to any Bluetooth capable smart device for further processing, evaluation and logging. This paper describes the specially designed Bluetooth platform for wireless measurements all the way from the basic concept, through hardware, firmware and software implementation, to the sample tests and measurements.
Keywords: sensors, wireless, bluetooth, data acquisition, condition monitoring
Published: 10.07.2015; Views: 195; Downloads: 12
.pdf Full text (1,02 MB)

3.
Modelling medium access control in IEEE 802.15.4 nonbeacon-enabled networks with probabilistic timed automata
Tatjana Kapus, original scientific article

Abstract: This paper concerns the formal modelling of medium access control in nonbeacon-enabled IEEE 802.15.4 wireless personal area networks with probabilistic timed automata supported by the PRISM probabilistic model checker. In these networks, the devices contend for the medium by executing an unslotted carrier sense multiple access with collision avoidance algorithm. In the literature, a model of a network which consists of two stations sending data to two different destination stations is introduced. We have improved this model and, based on it, we propose two ways of modelling a network with an arbitrary number of sending stations, each having its own destination. We show that the same models are valid representations of a star-shaped network with an arbitrary number of stations which send data to the same destination station. We also propose how to model such a network if some of the sending stations are not within radio range of the others, i.e. if they are hidden. We present some results obtained for these models by probabilistic model checking using PRISM.
Keywords: wireless personal area network, medium access control, hidden station, formal specification, probabilistic model checking
Published: 15.06.2017; Views: 105; Downloads: 10
.pdf Full text (2,25 MB)

4.
ERROR PROBABILITY MODEL FOR IEEE 802.15.4 WIRELESS TRANSMISSION WITH CO-CHANNEL INTERFERENCE AND BACKGROUND NOISE
Uroš Pešović, 2016, doctoral dissertation

Abstract: Data transmission sent through wireless channel is usually affected by background noise, multipath fading and interference which cause data errors. Influence of such disturbances is the most commonly expressed in a form of error probability statistics. Effects of these disturbances on IEEE 802.15.4 wireless transmissions are previously studied, except influence of co-channel interference (CCI) which originates from collision between IEEE 802.15.4 devices which perform simultaneous radio transmission. Our thesis puts forward the assumption that it is possible to derive more accurate analytical error probability model for higher data level error probability parameters without the idealization of PN spreading sequences. Additionally, thesis is that is possible to derive an accurate analytical error probability model in the case of CCI influenced by background noise by consideration of constellation diagram. IEEE 802.15.4 standard uses CSMA/CA (Carrier Sense Multiple Access with Collision Detection) channel access mechanism to prevent collisions between devices, but this mechanism doesn't provide protection from hidden node problem which is primary source of co-channel interference. Using Monte Carlo simulations we determined frequency of hidden node collisions, which shown that co-channel interference frequently occur in parts of the network with high traffic load. Some prior works in this field tend to idealize these non-ideal spreading sequences in order to simplify calculations for error probability parameters. Our doctor thesis presents analytical model of data level error probability parameters (symbol, bit and packet) for IEEE 802.15.4, which uses original non-ideal spreading sequences without their idealization. Proposed error probability model consists of mutually dependent chip, symbol, bit and packet error probability models. Derived error probability models are linked together, so each of error probability parameters can be determined using error probability parameter from the previous stage. Error probability model for IEEE 802.15.4 wireless communication could be used in network simulation tools in order to accurately simulate energy efficient medium access protocols in realistic scenarios. Presented theoretical results are tested by independent numerical simulation of IEEE 802.15.4 transmission according to Monte Carlo method. Simulation results shows that derived models for error probability parameters were matched by two simulation scenarios in background noise, for multipath fading and co-channel interface, respectively Furthermore, the accuracy of derived mathematical models was tested in real-world experiment using IEEE 802.15.4 compliant wireless transceivers for creating co-channel interference. Packets were received by software defined radio platform, which enabled realization of coherent receiver in which all error probability statistics could be collected. The results of the experiment show consistency with proposed analytical error probability models, but some deviations are caused by poor preamble synchronization under low SNR (Signal to Noise Ratio) value. The thesis was proved with Monte Carlo simulations of the physical level of the IEEE 802.15.4 communication and experimental measurements on a real physical communication system.
Keywords: IEEE 802.15.4 standard; error probability model; co-channel interference; Rician fading channel; additive white Gaussian noise; wireless transmission, wireless sensor networks, numerical simulations, software defined radio
Published: 14.10.2016; Views: 614; Downloads: 34
.pdf Full text (8,20 MB)

5.
The degree of deterioration of the tunnels of the Prague Metro based on a monitoring assessment
Ivan Vaníček, Martin Vaníček, 2007, original scientific article

Abstract: Understanding the ageing of structures is a very important issue from the point of view of assessing the risk inherent in those structures. Geotechnical structures, of course, have their own specific risks. This paper is focused on the tunnels of the Prague Metro, looked at from various aspects, i.e., geology, construction systems, and the influence of flooding. The section of the tunnels that was selected for monitoring is one of the most affected, and has a large system of cracked segments. However, even for this affected section the monitoring systems, based on macro- and micro-approaches, showed no significant deterioration was taking place. Nevertheless, for long-term monitoring a wireless system for data collection and transfer was installed and implemented. The results so far have been very positive.
Keywords: tunnel, metro, deterioration, ageing, geology, construction, monitoring assessment, MEMS, geophysical, wireless data transfer, metro flooding
Published: 18.05.2018; Views: 344; Downloads: 1
.pdf Full text (1,21 MB)

Search done in 0.09 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica