| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 2 / 2
First pagePrevious page1Next pageLast page
Modification of polyamide knitted fabric using different zeolites
Alenka Ojstršek, Tomaž Fakin, Karin Stana-Kleinschek, Darinka Fakin, 2017, original scientific article

Abstract: The aim of this research was to apply three different types of zeolites and the combination thereof in the form of a very fine powder, together with different chemicals and additives on polyamide knitted fabric according to an industrially acceptable exhaustion procedure in order to study changes in the morphology, optical properties and wettability of surfaces. Zeolites were analysed using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and gas physiosorption. Additionally, the morphology of zeolite-coated surfaces was examined closely using SEM, while changes in molecular-chemical level were examined by means of IR spectroscopy. Optical properties were studied using CIE colour measurement and diff use reflectance profi le determination, while the hydrophilic/hydrophobic character was examined using goniometry. The obtained results show the suitability of the employed exhaustion procedure, depending on the type of zeolite and the composition of the treatment bath. The results also provided evidence of the enhanced wettability of PA fabrics using 4A and 13X zeolites in combination with selected additives.
Keywords: zeolites, polyamide fibres, exhaustion, surface modification, wettability
Published: 31.08.2017; Views: 665; Downloads: 318
.pdf Full text (577,72 KB)
This document has many files! More...

Hemicelluloses application for synthetic polymer surfaces functionalisation
Nena Dimitrušev, 2016, doctoral dissertation

Abstract: The main aim of this thesis was development of thin functional layers from hemicelluloses xylans on the polyethylene terephthalate (PET) surfaces. Hemicelluloses, xylans, as renewable polymers, were chemically modified in order to introduce anionic and cationic functional groups. Two types of chemical modifications were performed: carboxymethylation in order to increase anionic nature of xylans and improve their hydrophilic character and cationization for introducing of amino groups and antimicrobial characteristics. Both types of modifications were successful, which was proved by ATR FTIR and raman techniques, elemental analysis, total bound nitrogen determination, size exclusion chromatography and polyelectrolyte titrations. Polyelectrolyte titration results showed increased amounts of deprotonated carboxyl groups in carboxymethylated xylans as well as increased amounts of protonated groups in cationized xylans. Antimicrobial activity of xylans was investigated by the determination of minimal inhibitory concentration (MIC) against S. aureus, E. coli, and C. albicans and it was found out that the samples with higher amounts of active amino groups showed lower MIC. Cationised glucuronoxylan showed significantly higher antimicrobial activities against S. aureus in comparison to cationised arabinoxylan and nonmodified xylan samples. However, none of xylan samples was active against fungi. In order to analyze surface properties of solid surfaces, films from xylan (nonmodified and modified) water solution was formed by casting method. The surface chemical composition of films were investigated by x-ray photoelectron spectroscopy (XPS), and the results showed that films made from carboxymethylated xylans had significantly higher amounts of carbon fraction involved in O=C-O bonds, compared to nonmodified xylans. Such surface chemical structure caused higher surface free energy with higher electron-donor contribution and thus high hydrophilicity of these films. Films made by cationized xylans had higher amount of carbon involved in C-C and C-H bonds compared to nonmodified and lower surface free energy with increase of dispersive Lifshitz Van der Waals contribution. In order to thoroughly investigate the adsorption of xylans onto synthetic surfaces Quartz crystal microbalance with dissipation unit (QCM-D) was used. For these measurements model films were prepared from PET by spin coating technique. Adsorption studies were performed at different conditions, such as pH, concentration and ionic strength of xylan solutions. For all the chemically modified xylans the adsorption was improved at pH 5 and with increased ionic strength with divalent ions. The adsorption increased as well with increasing of xylan solution concentration. In order to improve binding of adsorbed xylans so-called anchoring polymers were applied. When anchoring polymers were applied, better adsorption and fixation of adsorbed layer was confirmed, thus the adsorbed masses of xylans after rinsing with water were significantly higher in comparison to the adsorption without immediate anchoring layer. On the basis of these results, real PET fabric surfaces were treated using chemically modified xylans. The xylan solutions were applied onto PET fabric samples using spray coating technique, which is the best approximate to the large-scale procedures. In the first step, PET fabric was activated by alkaline hydrolysis and after that, anchoring agents and carboxymethylated and/or cationized xylans were adsorbed. The success of these treatments was evaluated by the determination of negative and positive charge of the treated PET fabric samples by titration techniques, methylene blue and acid orange 7 adsorption methods, water contact angles and wettability determination. From the potentiometric titrations results it was clearly seen that each new adsorbed layer onto PET fabric totally screened the charge of the former one. FESEM images showed rather thick layers covering the
Keywords: hemicellulose, polyethylene terephthalate, glucuronoxylan, arabinoxylan, carboxymethylation, cationization, PET model films, quartz crystal microbalance, PET fabric, surface free energy, wettability, antimicrobial properties
Published: 11.03.2016; Views: 1266; Downloads: 83
.pdf Full text (4,53 MB)

Search done in 0.08 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica