1.
Variable-length differential evolution for numerical and discrete association rule miningUroš Mlakar,
Iztok Fister,
Iztok Fister, 2023, original scientific article
Abstract: This paper proposes a variable-length Differential Evolution for Association Rule Mining. The proposed algorithm includes a novel representation of individuals, which can encode both numerical and discrete attributes in their original or absolute complement of the original intervals. The fitness function used is comprised of a weighted sum of Support and Confidence Association Rule Mining metrics. The proposed algorithm was tested on fourteen publicly available, and commonly used datasets from the UC Irvine Machine Learning Repository. It is also compared to the nature inspired algorithms taken from the NiaARM framework, providing superior results. The implementation of the proposed algorithm follows the principles of Green Artificial Intelligence, where a smaller computational load is required for obtaining promising results, and thus lowering the carbon footprint.
Keywords: association rule mining, differential evolution, data mining, variable-lenght solution representation, green AI
Published in DKUM: 18.01.2024; Views: 341; Downloads: 25
Full text (2,39 MB)
This document has many files! More...