| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Učenje s prenosom znanja z uporabo rekurentnih nevronskih mrež za namen napovedovanja cen živil : magistrsko delo
Jana Janković, 2024, master's thesis

Abstract: Živila so osnovne dobrine z velikim vplivom na gospodarsko in družbeno stabilnost, zato je natančno napovedovanje njihovih cen ključno. Modeli globokega učenja lahko prepoznajo kompleksne vzorce v časovnih vrstah, kot so zgodovinske cene živil. V tej raziskavi smo eksperimentalno primerjali konvencionalni pristop učenja in učenje s prenosom znanja v rekurentnih nevronskih mrežah za napovedovanje cen. Po iskanju optimalnih hiperparametrov smo modele naučili nad podatki, uporabili prenos znanja in ovrednotili oba pristopa. Na podlagi pridobljenih rezultatov smo ugotovili, da učenje s prenosom znanja bistveno pospeši proces učenja, vendar na račun slabše napovedne uspešnosti. Kljub temu pa rezultati magistrskega dela prispevajo k razumevanju, kdaj, zakaj in v kakšnih primerih je uporaba učenja s prenosom znanja smiselna izbira.
Keywords: napovedovanje cen živil, učenje s prenosom znanja, RNN, analiza časovnih vrst.
Published in DKUM: 15.01.2025; Views: 0; Downloads: 34
.pdf Full text (4,19 MB)

2.
Analiza učinkovitosti učenja s prenosom znanja pri detekciji objektov : magistrsko delo
Mitja Žalik, 2022, master's thesis

Abstract: Zaradi nedefiniranosti procesov odločanja globokih nevronskih mrež in njihovega dolgotrajnega učenja predstavlja določitev prenesenega znanja ključen izziv pri implementaciji učinkovite detekcije objektov na novih domenah. Preneseno znanje opredeljuje struktura plasti nevronske mreže, nad katerimi izgradimo nov model, ter izbira plasti, ki jim med učenjem zamrznemo vrednosti uteži. V magistrskem delu analiziramo vpliv števila zamrznjenih plasti na uspešnost učenja s prenosom znanja. V prvem delu opišemo tehnike prenosa znanja ter podamo formalno definicijo detekcije objektov, pri čemer opredelimo poznane metode in izpostavimo ključne izzive, povezane z njimi. Nato predstavimo izveden eksperiment, v katerem primerjamo uspešnost štirih konfiguracij pri prenosu znanja na modelu YOLOv4 na štiri različne ciljne domene. Ugotovimo, da so pri različnih ciljnih domenah uspešne različne konfiguracije, ki so odvisne od stopnje podobnosti izvorne in ciljne domene ter plasti izvornega modela, na kateri je določena značilka izluščena. Čeprav predstavljeni rezultati kažejo nemožnost predvidevanja optimalne konfiguracije prenosa znanja, izveden eksperiment nakazuje, da je učenje tudi v primeru neoptimalnega prenosa znanja uspešnejše od učenja brez prenosa znanja.
Keywords: učenje s prenosom znanja, prenos znanja, detekcija objektov, obdelava videoposnetkov, globoko učenje
Published in DKUM: 07.06.2022; Views: 1027; Downloads: 219
.pdf Full text (16,36 MB)

3.
Metoda prilagodljivega uglaševanja slojev konvolucijskih nevronskih mrež pri strojnem učenju s prenosom znanja : doktorska disertacija
Grega Vrbančič, 2021, doctoral dissertation

Abstract: V doktorski disertaciji predstavimo problematiko izbire uglaševanih slojev konvolucijskih nevronskih mrež pri strojnem učenju s prenosom znanja. Z izvedeno analizo vpliva izbire uglaševanih slojev konvolucijske nevronske mreže na uspešnost učenja potrdimo domnevo, da je primerna izbira uglaševanih slojev s ciljem doseganja visoke klasifikacijske uspešnosti odvisna od izbrane arhitekture konvolucijske nevronske mreže ter ciljnega problema oz. izbrane podatkovne zbirke. Z namenom naslovitve problema izbire uglaševanih slojev razvijemo in predlagamo prilagodljivo metodo DEFT, ki temelji na algoritmu diferencialne evolucije in deluje popolnoma samodejno, ne glede na uporabljeno arhitekturo konvolucijske nevronske mreže ali ciljni problem. Zaradi velike časovne kompleksnosti predlagane metode v nadaljevanju razvijemo in predlagamo na funkciji izgube temelječo metriko LDM, ki v zgodnji fazi učenja uspešno zaznava manj primerne izbire uglaševanih slojev, kar nam omogoča, da za zaznane manj primerne izbire uglaševanih slojev predčasno zaključimo učenje in na tak način zmanjšamo časovno zahtevnost predlagane metode. Uspešnost predlagane metode ovrednotimo z uporabo treh različnih arhitektur globokih konvolucijskih mrež nad tremi raznolikimi slikovnimi podatkovnimi zbirkami. Klasifikacijsko uspešnost predlagane metode z in brez uporabe metrike LDM smo primerjali s klasičnimi pristopi učenja globokih konvolucijskih nevronskih mrež. Primerjavo izvedemo z uporabo najpogostejših klasifikacijskih metrik, časom, potrebnim za učenje, ter porabljenim številom epoh. Rezultate smo preverili z uporabo klasičnih metod statistične analize kot tudi z naprednim pristopom Bayesove analize. Izsledki slednje so potrdili tezo, da je mogoče z uporabo metode prilagodljivega uglaševanja slojev konvolucijske nevronske mreže uspešno nasloviti problem izbire slojev ter da lahko z uporabo metrike LDM za zaznavo manj primernih izbir uglaševanih slojev učinkovito zmanjšamo število epoh, potrebnih za učenje, ob doseganju primerljivih rezultatov.
Keywords: strojno učenje, globoko učenje, učenje s prenosom znanja, klasifikacija, uglaševanje, optimizacija
Published in DKUM: 19.10.2021; Views: 1381; Downloads: 315
.pdf Full text (5,35 MB)

Search done in 0.04 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica