| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Obtaining the synthetic fuels from waste plastic and their effect on cavitation formation in a common-rail diesel injector
Luka Kevorkijan, Amalia Palomar-Torres, Eloisa Torres Jiménez, Carmen Mata, Ignacijo Biluš, Luka Lešnik, 2023, original scientific article

Abstract: The presented paper addresses two significant issues of the present time. In general, the studies of the effect of synthetic fuels on cavitation formation and cavitation erosion prediction in the nozzle tip of common-rail diesel injectors were addressed. The first problem is plastic waste, which can have a significant negative environmental impact if not treated properly. Most plastic waste has high energy value, so it represents valuable material that can be used in resource recovery to produce various materials. One possible product is synthetic fuel, which can be produced using thermal and catalytic pyrolysis processes. The first issue addressed in the presented paper is the determination of fuel properties since they highly influence the fuel injection process, spray development, combustion, etc. The second is the prediction of cavitation development and cavitation erosion in a common-rail diesel injector when using pyrolytic oils from waste plastic. At first, pyrolytic oils from waste high- and low-density polyethylene were obtained using thermal and catalytic pyrolysis processes. Then, the obtained oils were further characterised. Finally, the properties of the obtained oils were implemented in the ANSYS FLUENT computational program and used in the study of the cavitation phenomena inside an injection nozzle hole. The cavitating flow in FLUENT was calculated using the Mixture Model and Zwart-Gerber-Belamri cavitation model. For the modelling of turbulence, a realisable k–ε model with Enhanced Wall Treatment was used, and an erosion risk indicator was chosen to compare predicted locations of cavitation erosion. The results indicate that the properties of the obtained pyrolytic oils have slightly lower density, surface tension and kinematic viscosity compared to conventional diesel fuel, but these minor differences influence the cavitation phenomenon inside the injection hole. The occurrence of cavitation is advanced when pyrolytic oils are used, and the length of cavitation structures is greater. This further influences the shift of the area of cavitation erosion prediction closer to the nozzle exit and increases its magnitude up to 26% compared to diesel fuel. All these differences have the potential to further influence the spray break-up process, combustion process and emission formation inside the combustion chamber.
Keywords: plastic waste, synthetic fuels, pyrolytic oils, common-rail, cavitation, erosion, transient simulation
Published in DKUM: 18.03.2024; Views: 299; Downloads: 36
.pdf Full text (4,55 MB)
This document has many files! More...

2.
Methodology improvements to simulate performance and emissions of engine transient cycles from stationary operating modes: A case study applied to biofuels
Fernando Cruz-Peragón, Eloisa Torres Jiménez, Luka Lešnik, Octavio Armas, 2022, original scientific article

Abstract: In the present study engine/vehicle responses from a standardized transient test cycle are estimated using 13 stationary operating regimes following a previously developed methodology. The main advantage of the methodology tested is that allows obtaining an estimation of transient parameters in a stationary test bench, which requirements are much less demanding than those of the transient test bench. The objectives are: in one hand, to demonstrate that the methodology correctly estimates engine responses regardless of the fuel tested, as it is proposed in a previous paper and, on the other hand, to improve the methodology and the accuracy of the estimated parameters. The fuels tested are renewable fuels from different raw materials (biodiesel from rapeseed, sunflower, and soybean), and diesel fuel as the reference. Biodiesels were tested neat and blended (30% v/v) with diesel fuel. The engine is a common-rail light-duty one, and the standardized testing procedure used to illustrate the implementation of the methodology is the New European Driving Cycle (NEDC). Two design of experiments (DoE) of 13 runs each were analyzed. One of the DoE tested was proposed for characterizing the NEDC, referred as to CTDoE design, while the other one is a five-level fractional factorial design (FFDoE) that adequately matches the optimality criteria of orthogonality, D-optimal criterion, rotatability, and space-filling. The original methodology was improved by the implementation of a new fitting function that simulates the cold start effect over the engine parameters and by an new definition of the boundary in the [n,M] domain. These improvements showed significantly higher accuracy of the estimated engine parameters obtained, both instantaneous and accumulated, respect to the original methodology. The results obtained based on the application of the FFDoE design support the feasibility of the methodology tested. Engine performance and regulated emissions responses, such as intake air and fuel mass flow rate, thermomechanical exergy rate, exhaust gas residual heat rate, total hydrocarbons (THC), nitrogen oxides (NOx), carbon monoxide (CO) and particulate matter (PM) emissions from a transient test were instantaneously and cumulatively predicted with high accuracy using the engine responses from 13 steady-state operating modes.
Keywords: simulation, light duty diesel engine, transient cycle, biodiesel, design of experiments, cold start correction function
Published in DKUM: 21.09.2023; Views: 350; Downloads: 626
.pdf Full text (13,39 MB)
This document has many files! More...

Search done in 0.02 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica