| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
2.
A novel metalloprotease from Bacillus cereus for protein fibre processing
Fernanda de Sousa, Suzana Jus, Anita Erbel, Vanja Kokol, Artur Cavaco-Paulo, Georg M. Gübitz, 2007, original scientific article

Abstract: A novel protease produced by Bacillus cereus grown on wool as carbon and nitrogen source was purified. B. cereus protease is a neutral metalloprotease with a molecular mass of 45.6 kDa. The optimum activity was at 45 °C and pH 7.0. The substrate specificity was assessed using oxidized insulin B-chain and synthetic peptide substrates. The cleavage of the insulin B-chain was determined to be Asn3, Leu6, His10-Leu11, Ala14, Glu21, after 12 h incubation. Among the peptide substrates, the enzyme did not exhibit activity towards ester substrates; with p-nitroanilide, the kinetic data indicate that aliphatic and aromatic amino acids were the preferred residues at the P1 position. For furylacryloyl peptides substrates, which are typical substrates for thermolysin, the enzyme exhibited high hydrolytic activity with a Km values of 0.858 and 2.363 mM for N-(3-[2-Furyl]acryloyl)-Ala-Phe amide and N-(3-[2-Furyl]acryloyl)-Gly-Leu amide, respectively. The purified protease hydrolysed proteins substrates such as azocasein, azocoll, keratin azure and wool.
Keywords: textile finishing, enzymatic modification, wool fibre, enzymes, Bacilus cereus, specificity, kinetics, metalloprotease
Published: 01.06.2012; Views: 1027; Downloads: 68
URL Link to full text

3.
Multivariate analysis and chemometric characterisation of textile wastewater streams
Darja Kavšek, Tina Jerič, Alenka Majcen Le Marechal, Simona Vajnhandl, Adriána Bednárová, Darinka Brodnjak-Vončina, 2013, original scientific article

Abstract: The aim of this work was to design a quick and reliable method for the evaluation and classification of wastewater streams into treatable and non-treatable effluents for reuse/recycling. Different chemometric methods were used for this purpose handling the enormous amount of data, and additionally to find any hidden information, which would increase our knowledge and improve the classification. The data obtained from the processes description, together with the analytical results of measured parameters' characterising the wastewater of a particular process, enabled us to build a fast-decision model for separating different textile wastewater outlets. Altogether 49 wastewater samples from the textile finishing company were analysed, and 19 different physical chemical measurements were performed for each of them. The resulting classification model was aimed at an automated decision about the choice of treatment technologies or a prediction about the reusability of wastewaters within any textile finishing or other company having similar characteristics of wastewater streams.
Keywords: textile finishing wastewater, chemometrics, multivariate data analysis, wastewater treatment
Published: 10.07.2015; Views: 887; Downloads: 23
.pdf Full text (130,86 KB)
This document has many files! More...

Search done in 0.06 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica