| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme


21 - 23 / 23
First pagePrevious page123Next pageLast page
The wavelet transform for BEM computational fluid dynamics
Jure Ravnik, Leopold Škerget, Matjaž Hriberšek, 2004, original scientific article

Abstract: A wavelet matrix compression technique was used to solve systems of linear equations resulting from BEM applied to fluid dynamics. The governing equations were written in velocity-vorticity formulation and solutions of the resulting systems of equations were obtained with and without wavelet matrix compression. A modification of the Haar wavelet transform, which can transformvectors of any size, is proposed. The threshold, used for making fully populated matrices sparse, was written as a product of a user defined factor and the average value of absolute matrix elements values. Numerical tests were performed to assert, that the error caused by wavelet compression depends linearly on the factor , while the dependence of the error on the share of thresholded elements in the system matrix is highly non-linear. The results also showed that the increasing non-linearity (higher Ra and Re numbervalues) limits the extent of compression. On the other hand, higher meshdensity enables higher compression ratios.
Keywords: fluid mechanics, computational fluid dynamics, boundary element method, wavelet transform, linear systems of equations, velocity vorticity formulation, driven cavity, natural convection, system matrix compression
Published: 01.06.2012; Views: 1495; Downloads: 72
URL Link to full text

Encyclopedia of complexity and systems science
dictionary, encyclopaedia, lexicon, manual, atlas, map

Abstract: Encyclopedia of Complexity and Systems Science provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. The science and tools of complexity and systems science include theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, stochastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms. Examples of near-term problems and major unknowns that can be approached through complexity and systems science include: The structure, history and future of the universe; the biological basis of consciousness; the integration of genomics, proteomics and bioinformatics as systems biology; human longevity limits; the limits of computing; sustainability of life on earth; predictability, dynamics and extent of earthquakes, hurricanes, tsunamis, and other natural disasters; the dynamics of turbulent flows; lasers or fluids in physics, microprocessor design; macromolecular assembly in chemistry and biophysics; brain functions in cognitive neuroscience; climate change; ecosystem management; traffic management; and business cycles. All these seemingly quite different kinds of structure formation have a number of important features and underlying structures in common. These deep structural similarities can be exploited to transfer analytical methods and understanding from one field to another. This unique work will extend the influence of complexity and system science to a much wider audience than has been possible to date.
Keywords: cellular automata, complex networks, computational nanoscience, ecological complexity, ergodic theory, fractals, game theory, granular computing, graph theory, intelligent systems, perturbation theory, quantum information science, system dynamics, traffic management, chaos, climate modelling, complex systems, dynamical sistems, fuzzy theory systems, nonlinear systems, soft computing, stochastic processes, synergetics, self-organization, systems biology, systems science
Published: 01.06.2012; Views: 1759; Downloads: 93
URL Link to full text

The complexity of porous structure of building materials
Marko Samec, 2011, dissertation

Abstract: This thesis seeks to establish the link between the structure (in a topological sense) of porous space and charged particle dynamics in porous matter, specifically in constituent elements of sustainable building materials such as clay, cement and soil. The work done is a combination of experimental research and modelling of analysed data using advanced and expanded network models to model pore structure and generalized conductivity model. The main outcome of this doctoral thesis is the demonstration that there is a correlation between the large scale structure of the pore space and the properties of the motion of charged particles through the pore space. This was achieved by conducting two experiments: the structure of pore space of selected porous materials (soil samples, clays, cements, clay-cement mixtures) was investigated using state-of-the-art X-ray computed microtomography, while the dynamics of charged particles in the samples was probed using low-frequency dielectric spectroscopy. The research done and described in the thesis is directed towards the advancement of understanding the transport phenomena and the structure of porous media which is of paramount importance for solving problems in building physics dealing with moist transport in building's envelope, the building-ground interaction, and in transport of contaminants in the vicinity of the repositories where the transfer of moist through soil can be the source of contamination.
Keywords: porous matter, clay-water system, hydrating cement, fractional dynamics, dielectric response, X-ray computed tomography, image analysis, complex network
Published: 11.05.2011; Views: 3796; Downloads: 178
.pdf Full text (34,69 MB)

Search done in 0.09 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica