| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 4 / 4
First pagePrevious page1Next pageLast page
Converting waste into products and energy using complete circular economy and the hydrogen effect technique to reduce dependence on natural gas
Anita Kovač Kralj, 2023, original scientific article

Abstract: Conversion of waste into products and energy has the potential to reduce CO2 emis-sion through implementation of a complete circular economy and utilisation of the hy-drogen effect technique. This study considers the novelties of the hydrogen effect tech-nique, which incorporates an upgraded input unit mathematical model. It includes real-simulated results obtained using an Aspen Plus & REG; simulator, and enlarged production. This technique is developed for optimal municipal solid waste (MSW) combustion, gas-ification, and reforming, presented as an upgraded input unit for syngas production, which can reduce CO2 emissions by 3 & BULL;106 kmol a-1. This approach is exemplified by utilizing existing methanol and dimethyl ether production processes from natural gas, as they can be achieved and exceeded using MSW with varying hydrogen amounts. The optimal upgraded methanol and dimethyl ether production processes can increase pro-duction by 47 % and 16 %, including only the upgraded input unit, as well as decrease the temperature in the product reactors by 30 & DEG;C.
Keywords: waste gasification, flue gas, syngas, hydrogen, circular economy, combustion
Published in DKUM: 13.02.2024; Views: 258; Downloads: 18
.pdf Full text (524,98 KB)
This document has many files! More...

Innovative gasification technology for the circular economy
Teos Perne, Marko Šetinc, Tine Seljak, 2020, original scientific article

Abstract: This article presents a novel gasification technology process in the context of achieving carbon neutrality by establishing a sustainable circulation of carbonaceous materials with a focus on the production of virgin materials from various kinds of waste. The technology can alleviate the key limitations of existing gasification systems, which are the production and management of residue tars. The innovative technology process re-utilizes tars within the reaction itself, enabling an endless cycle of carbon. It also ensures high flexibility for efficiently handling heterogenic waste materials.
Keywords: gasification, carbonaceous, waste, tars, syngas, catalyst, circular economy, carbon, methano
Published in DKUM: 01.12.2023; Views: 414; Downloads: 8
.pdf Full text (2,56 MB)
This document has many files! More...

Underground coal gasification - the Velenje coal mine energy and economic calculations
Damjan Konovšek, Zdravko Praunseis, Jurij Avsec, Gorazd Berčič, Andrej Pohar, Simon Zavšek, Milan Medved, 2017, original scientific article

Abstract: Underground coal gasification (UCG) is a viable possibility for the exploitation of vast coal deposits that are unreachable by conventional mining and can meet the energy, economic and environmental demands of the 21st century. Due to the complexity of the process, and the site-specific coal and seam properties, it is important to acknowledge all the available data and past experiences, in order to conduct a successful UCG operation. Slovenia has huge unmined reserves of coal, and therefore offers the possibility of an alternative use of this domestic primary energy source. According to the available underground coal gasification technology, the energy and economic assessment for the exploitation of coal to generate electricity and heat was made. A new procedure for the estimation of the energy efficiency of the coal gasification process, which is also used to compare the energy analyses for different examples of coal exploitation, was proposed, as well as the technological schemes and plant operating mode in Velenje, and the use of produced synthetic coal gas (syngas). The proposed location for the pilot demonstration experiment in Velenje Coal Mine was reviewed and the viability of the underground coal gasification project in Velenje was determined.
Keywords: underground coal gasification, syngas, clean coal technology, energy analysis, economic analysis
Published in DKUM: 31.08.2017; Views: 2837; Downloads: 446
.pdf Full text (1,32 MB)
This document has many files! More...

Search done in 7.71 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica