| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 6 / 6
First pagePrevious page1Next pageLast page
Mechanical behaviour of photopolymer cell-size graded triply periodic minimal surface structures at different deformation rates
Yunus Emre Yilmaz, Nejc Novak, Oraib Al-Ketan, Hacer Irem Erten, Ulas Yaman, Anja Mauko, Matej Borovinšek, Miran Ulbin, Matej Vesenjak, Zoran Ren, 2024, original scientific article

Abstract: This study investigates how varying cell size affects the mechanical behaviour of photopolymer Triply Periodic Minimal Surfaces (TPMS) under different deformation rates. Diamond, Gyroid, and Primitive TPMS structures with spatially graded cell sizes were tested. Quasi-static experiments measured boundary forces, representing material behaviour, inertia, and deformation mechanisms. Separate studies explored the base material’s behaviour and its response to strain rate, revealing a strength increase with rising strain rate. Ten compression tests identified a critical strain rate of 0.7 s−1 for “Grey Pro” material, indicating a shift in failure susceptibility. X-ray tomography, camera recording, and image correlation techniques observed cell connectivity and non-uniform deformation in TPMS structures. Regions exceeding the critical rate fractured earlier. In Primitive structures, stiffness differences caused collapse after densification of smaller cells at lower rates. The study found increasing collapse initiation stress, plateau stress, densification strain, and specific energy absorption with higher deformation rates below the critical rate for all TPMS structures. However, cell-size graded Primitive structures showed a significant reduction in plateau and specific energy absorption at a 500 mm/min rate.
Keywords: cellular materials, triply periodical minimal surface, photopolymer, mechanical properties, strain rate, experimental compressive testing, computer simulations
Published in DKUM: 22.05.2024; Views: 59; Downloads: 5
.pdf Full text (9,33 MB)
This document has many files! More...

Advance analysis of the obtained recycled materials from used disposable surgical masks
Alen Erjavec, Julija Volmajer Valh, Silvo Hribernik, Tjaša Kraševac Glaser, Lidija Fras Zemljič, Tomaž Vuherer, Branko Neral, Mihael Brunčko, 2024, original scientific article

Abstract: The production of personal protective equipment (PPE) has increased dramatically in recent years, not only because of the pandemic, but also because of stricter legislation in the field of Employee Protection. The increasing use of PPE, including disposable surgical masks (DSMs), is putting additional pressure on waste collectors. For this reason, it is necessary to find high-quality solutions for this type of waste. Mechanical recycling is still the most common type of recycling, but the recyclates are often classified as low-grade materials. For this reason, a detailed analysis of the recyclates is necessary. These data will help us to improve the properties and find the right end application that will increase the value of the materials. This work represents an extended analysis of the recyclates obtained from DSMs, manufactured from different polymers. Using surface and morphology tests, we have gained insights into the distribution of different polymers in polymer blends and their effects on mechanical and surface properties. It was found that the addition of ear loop material to the PP melt makes the material tougher. In the polymer blends obtained, PP and PA 6 form the surface (affects surface properties), while PU and PET are distributed mainly inside the injection-molded samples.
Keywords: mechanical recycling, disposable surgical mask, morphology, surface properties, mechanical properties, nonwoven materials, PPE
Published in DKUM: 09.04.2024; Views: 125; Downloads: 5
.pdf Full text (8,08 MB)
This document has many files! More...

Kraft lignin/tannin as a potential accelerator of antioxidant and antibacterial properties in an active thermoplastic polyester-based multifunctional material
Klementina Pušnik Črešnar, Alexandra Zamboulis, Dimitrios Bikiaris, Alexandra Aulova, Lidija Fras Zemljič, 2022, original scientific article

Abstract: This research focuses on key priorities in the field of sustainable plastic composites that will lead to a reduction in CO2 pollution and support the EU’s goal of becoming carbon neutral by 2050. The main challenge is to develop high-performance polyphenol-reinforced thermoplastic composites, where the use of natural fillers replaces the usual chemical additives with non-toxic ones, not only to improve the final performance but also to increase the desired multifunctionalities (structural, antioxidant, and antibacterial). Therefore, poly (lactic acid) (PLA) composites based on Kraft lignin (KL) and tannin (TANN) were investigated. Two series of PLA composites, PLA-KL and PLA-TANN, which contained natural fillers (0.5%, 1.0%, and 2.5% (w/w)) were prepared by hot melt extrusion. The effects of KL and TANN on the PLA matrices were investigated, especially the surface physicochemical properties, mechanical properties, and antioxidant/antimicrobial activity. The surface physicochemical properties were evaluated by measuring the contact angle (CA), roughness, zeta potential, and nanoindentation. The results of the water contact angle showed that neither KL nor TANN caused a significant change in the wettability, but only a slight increase in the hydrophilicity of the PLA composites. The filler loading, the size of the particles with their available functional groups on the surfaces of the PLA composites, and the interaction between the filler and the PLA polymer depend on the roughness and zeta potential behavior of the PLA-KL and PLA-TANN composites and ultimately improve the surface mechanical properties. The antioxidant properties of the PLA-KL and PLA-TANN composites were determined using the DPPH (2,2′-diphenyl-1-picrylhydrazyl) test. The results show an efficient antioxidant behavior of all PLA-KL and PLA-TANN composites, which increases with the filler content. Finally, the KL- and PLA-based TANN have shown resistance to the Gram-negative bacteria, E. coli, but without a correlation trend between polyphenol filler content and structure.
Keywords: poly (lactic acid), Kraft lignin, tannin, multifunctionality of PLA composites, surface mechanical properties, antioxidant/antibacterial activity
Published in DKUM: 18.09.2023; Views: 403; Downloads: 17
.pdf Full text (3,87 MB)
This document has many files! More...

The adhesion phenomena in polypropylene/wollastonite composites
Iztok Švab, Vojko Musil, Mirela Leskovac, 2005, original scientific article

Abstract: Modification of polypropylene (PP) with wollastonite fillers was investigated in this paper. Three types of different silane pretreated wollastonite mineral filler were used for preparation of binary PP/wollastonite composites. The composite samples were homogenized in a Brabender Plasti-Corder kneading chamber and compression moulded into plates on a laboratory press. The adhesion between the wollastonite fillers used in this study and the PP matrix was predicted on the basis of the calculated adhesion parameters (work of adhesion, interfacial free energy and spreading coefficient) obtained by the surface free energy of pure materials. The contact angle method was used to determine surface free energy of components. The obtained values of adhesion parameters at the interface in the composites were correlated with mechanical properties as well as morphology observations of corresponding composites and were proved to be in relatively good agreement with the mechanical property measurements. Stronger adhesion in investigated composites has reflected in higher yield stress and tensile strength at break but in lower elongation at break and impact resistance.
Keywords: polypropylene composites, wollastonite, surface energy, adhesion, morphology, mechanical properties
Published in DKUM: 10.07.2015; Views: 1665; Downloads: 111
.pdf Full text (498,06 KB)
This document has many files! More...

Selestina Gorgieva, 2014, doctoral dissertation

Abstract: This work presents the methodological study, processing and optimization of novel, technologically acceptable procedure for in situ coating of polypropylene (PP) mesh (used for hernia treatment) with physico-chemically, mechanically and micro-structurally different gelatin (GEL) scaffolds to assess implant composite biocompatibility impact. In order to systematically follow the experimental work progress and respective achievements, whole research path is subdivided into three main sections. In the first section, the procedure for fabrication of gradiently micro-porous GELscaffolds on the cryo-unit’s cooling plate surface, using spatiotemporal and temperature- controlled gelation and freezing, followed by lyophylizaton was studied. Subsequently, cross-linking procedure using different molarities of reagents (EDC and NHS) and reaction media (100% PBS or 20/80% PBS/EtOH mixture) was performed for variable time extensions (1-24 h), rendering scaffolds physico-chemical properties. In this way, scaffolds with micro-structures having porosity gradient from 100 µm to 1000 µm and pores with rounded to ellipsoid morphology were formed, which, in combination with ethanol (EtOH) addition in cross-linking media modulates the swelling capacity towards twice lower percentages (~600%) comparing with scaffolds cross-linked in 100% PBS. Whilst the presence of EtOH reduce the cross-linking kinetic by retaining the scaffolds’ micro-structure formed during freezing, the 100% PBS and higher EDC molarity resulted in 40% cross-linking degree, being expressed as a thermal resistance up to 73 °C. The presented integral fabrication procedure was shown to allow tuning of both, the physical and micro-structural properties of scaffold, utilized in preparation of materials for specific biomedical applications. In the second part, the complex relation between surface and interface-related physico-chemical properties and gradient micro-structuring of 3D GELscaffolds, being fabricated by simultaneous temperature- controlled freeze-thawing cycles and in situ cross-linking using variable conditions (pH and molarity of carbodiimide reagent) and fibroblast cells viability (by tracking of their spreading and morphology) was established. Rarely- populated cells with rounded morphology and small elongations were observed on scaffolds with apparently negatively- charged surface with a lower cross-linking degree (CD) and consequently higher molecular mobility and availability of cell-recognition sequences, in comparison with the prominently- elongated and densely- populated cells on a scaffold’s with positively- charged surface, higher CD and lower mobility. Surface micro-structure effect was demonstrated by cell’s vacuolization and their pure inter-communication being present on scaffold’s bottom side with smaller pores (25±19 µm) and thinner pore walls (9±5 µm), over the air- exposed side with twice bigger pores (56±38 µm) and slightly thicker pore walls (12±6 µm). Strong correlation of preparation conditions (pH and reagents molarity) with CD (r2=0.96) and moderate correlation with local molecular mobility (r2 =-0.44), as well as micro-structure features being related to temperature gradient, imply on possibility to modulate scaffold’s properties in a direction to guide cell’s viability and most likely its genotype development. The third part presents an innovative strategy for the fabrication of bio-active PPmesh-GELscaffold composites with a potential for abdominal hernia treatment, where mesothelial cells in-growth have to be stimulated together with fibroblasts on-site proliferation, while formation of fibrin-developing, viscera-to-abdominal wall adhesions should be reduced, together with bacteria- related infections. In this respect, the plasma pre-activated PPmesh was coated with micro-structured GELscaffold, with pore size in 50 µm to 100 µm range at the upper-side and loosely- porous network at the composite bottom side, being modulated by sample thickness and freezing end- temperature applied. Simultaneously, the
Keywords: gelatin, targeted cross-linking, controlled freezing, gradiental micro-porosity, scaffold, surface and interface chemistry, physico-mechanical properties, polypropylene mesh, composite, biocompatibility.
Published in DKUM: 07.05.2014; Views: 2258; Downloads: 169
.pdf Full text (4,98 MB)

The influence of thread twist on alterations in fibers` mechanucl properties
Andreja Rudolf, Jelka Geršak, 2006, original scientific article

Abstract: In order to design high-quality threads, it is necessary to know the properties of threads and fibers, as well as the loadings and deformations which may occur during the sewing process. Thread properties depend on the mechanical properties of the fiber and the constructional parameters of the thread and its surface treatment, which directly influence sewing performance.The mechanical properties of a thread primarily depend on the fiber mechanical properties and the amount of twist. Knowledge of the thread dynamic loadings during the sewing process, depending on the number of turns and the lubrication method, is important for planning the required processing properties of the thread. This paper presents research into the influence of thread twist and the lubrication method on the mechanical properties and dynamic load of PES core-spun thread and its fibers. Research into the mechanical properties of the different twisted and surface treated threads, and separated fibers was carried out for this purpose. The influence of threaddynamic load during a sewing process was also researched regarding any alterations in the mechanical properties of the threads and separated fibers. Analyses of the results show that the amount of twist depends on the mechanical properties of the thread and its constituent fibers, whilst the method of surface treatment is based on the specific mechanical properties of the thread. A dynamic load causes greater or smaller thread deformations, which is reflected in changes in the thread and fiber mechanical properties. The occurred changes depend on dynamic load, amount of twist, and the lubrication method, which is confirmed with statistical analysis of the measured results.
Keywords: garment manufacturing, sewing, threads, textile fibres, surface treatment, dynamic loads, mechanical properties, amount of twist
Published in DKUM: 30.05.2012; Views: 2425; Downloads: 33
URL Link to full text

Search done in 2.5 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica