| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 5 / 5
First pagePrevious page1Next pageLast page
Green techniques for preparation of red beetroot extracts with enhanced biological potential
Dragana Borjan, Vanja Šeregelj, Darija Cör Andrejč, Lato Pezo, Vesna Tumbas Šaponjac, Željko Knez, Jelena J. Vulić, Maša Knez Marevci, 2022, original scientific article

Abstract: Red beetroot is well known for its high proportion of betalains, with great potential as functional food ingredients due to their health-promoting properties. The objective of this study was to investigate the influence of processing techniques such as Soxhlet, cold, ultrasound and supercritical fluid extraction on the betalains content and its antioxidant, anti-inflammatory and antihyperglycemic activities. Whilst Soxhlet extraction with water has provided the highest yield, the highest content of total phenolics was found in an extract prepared using Soxhlet extraction with 50% ethanol. Amongst eight phenolic compounds detected in the extracts, protocatechuic acid was the most abundant. The concentrations of total phenolics ranged from 12.09 mg/g (ultrasound extraction with 30% methanol) to 18.60 mg/g (Soxhlet extraction with 50% ethanol). The highest anti-inflammatory activity was observed for cold extraction with 50% methanol extract. The high radical scavenging activity of supercritical fluid extracts could be a consequence of nonphenolic compounds. The chemometrics approach was further used to analyse the results to find the “greenest” method for further possible application in the processing of beetroot in the food and/or pharmaceutical industry. According to the standard score, the best extraction method was determined to be Soxhlet extraction with 50% ethanol.
Keywords: red beetroot, supercritical fluid extraction, antioxidant activity, anti-inflammatory activity, antihyperglycemic activity, chemometric approach
Published in DKUM: 18.08.2023; Views: 153; Downloads: 11
.pdf Full text (944,05 KB)
This document has many files! More...

Sustainable processing of materials using supercritical fluids : doktorska disertacija
Dragana Borjan, 2022, doctoral dissertation

Abstract: Supercritical fluids (SCFs) are powerful solvents with many unique properties. They have great potential for many processes, from extraction to chemical reactions and recycling. Accordingly, phase equilibrium data and thermodynamic and transport properties measurements in systems with a supercritical phase, as well as reliable and versatile mathematical models of the phase equilibrium thermodynamics, are needed for the process design and economic feasibility studies. The dissertation focuses on the benefits of supercritical fluid technology and consists of three main sections. The first section includes studies of the phase equilibria of the binary gas-alcohol and gas-urea derivatives. The influence of pressure and temperature on the system behaviour (solubility, viscosity, density, interfacial tension, melting point curve) was investigated. Most of the experiments were carried out with a high-pressure optical view cell, with minor modifications of the apparatus and measurement principle to determine mentioned thermodynamic and transport properties. The second part of the dissertation deals with the recovery of extracts from natural materials. Special interest is oriented towards supercritical fluid extracts, characterised by strong biological activities, especially antimicrobial and antioxidant properties. Supercritical fluid extraction has been performed on a semi-continuous apparatus (at pressures of 150 bar and 250 bar and temperatures of 313.15 K and 333.15 K for oregano extraction; and at pressures of 100 bar and 300 bar and temperatures of 313.15 K and 333.15 K for red beetroot extraction) and various methods such as the microdilution method and the DPPH method were used to determine antimicrobial and antioxidant activity. In the third part, an overview of different methods for recycling carbon fibre reinforced composites is given, including chemical recycling with supercritical fluids. This field has not been well explored, and the approach is relatively new but very interesting from a sustainable point of view. For an economically feasible process design, the thermodynamic and mass transfer data have to be determined. The principles of the future lab- and pilot-scale operations demand these supporting data be known. The results obtained in the frame of this study represent the high added value in the scientific field. They are essential to design and modify processes that yield products that cannot be achieved with conventional production processes.
Keywords: supercritical fluids, alcohols, urea, phase equilibria, viscosity, density, interfacial tension, modified capillary method, isolation methods, supercritical fluid extraction, pharmacological activity, carbon fiber reinforced composites, recycling techniques
Published in DKUM: 11.10.2022; Views: 582; Downloads: 111
.pdf Full text (4,64 MB)

Extraction and separation of active compounds by supercritical fluids extraction and preparative supercritical chromatography
Alejandro Bartolome Ortega, 2017, doctoral dissertation

Abstract: This doctoral dissertation is focused on the benefits of supercritical fluids technology in several industry processes. Although, supercritical CO2 is currently the most employed supercritical fluid at laboratory scale, its presence in the industry field is still limited, due to the necessity of high investment costs. Despite that fact, operations with supercritical CO2 are cheap, environmentally friendly and simple, which make it an excellent alternative to organic compounds. Extraction and separation of highly pure active compounds, such as xanthohumol or beta-sitosterol, are demanded for pharmaceutical or food industries, which create an excellent opportunity for supercritical CO2 operations, since they are solvent free. This manuscript is divided into three different parts. In the first part, conventional extraction processes and supercritical fluid process are theoretically compared and supercritical fluid extraction from saw palmetto berries is presented. In the second part, conventional chromatographic techniques and supercritical fluid chromatography are theoretically compared and separation of xanthohumol from hop extracts by supercritical fluid chromatography is presented. In the last part, different encapsulation and emulsification processes are listed and defined. These processes are very important for food and pharmaceutical companies, since several active compounds are not water soluble which create the necessity of different formulations in order to be solved in an appropriate media. Regarding the experimental part, extractions from saw palmetto berries were performed at various pressures and temperatures, which were higher than the ones that were applied in previous studies, in order to estimate and calculate different parameters (solubility, extraction kinetic curves, composition,…), and to compare different studies. Separation of xanthohumol was carried out in a homemade supercritical chromatography, which manageable variables were temperature, pressure, mass flow-rate, modifier, and stationary phase. The results were compared with those ones which were obtained using conventional techniques, in order to prove the suitability and the improvement of this technique against others tecniques.
Keywords: supercritical CO2, supercritical fluid extraction, supercritical fluid chromatography, xanthohumol, saw palmetto berries, Beta-Sitosterol, encapsulation
Published in DKUM: 13.07.2017; Views: 1933; Downloads: 241
.pdf Full text (3,20 MB)

Isolation and Characterisation of Flavonoids From Citrus Peels
Katja Makovšek, 2013, doctoral dissertation

Abstract: Citrus flavonoids are very interesting for food and pharmaceutical industry since they possess many antioxidant properties and biological activities. Mandarin peels represent an important source of hesperidin and polymethoxy flavones nobiletin and tangeretin. Pommelo peels represent an important source of naringin that can be used as precursor for naringin dihdydro-2,3-chalcone artificial sweetener. Since pommelo peels possess good antioxidant and antimicrobial properties, their extracts are very interesting products for food industry. Therefore isolation of flavonoid from mandarin and pommelo peels is an important topic of investigations. The investigation of the doctoral dissertation is divided in four parts. The first part is focused on the determination of the optimal conditions for the isolation of hesperidin and naringin from mandarin and pommelo peels by conventional extraction. The optimal conditions and the influence of extraction parameters are determined by Taguchi methodology. Very good isolation efficiency of hesperidin, 61.3 mg HES from 1 g of mandarin peels, was obtained by 70 % acetone solution and extraction conditions: 60 °C, 90 min, material to solvent ratio 1/50 g/mL and 3 stages of extraction. The highest amount of naringin, 32.8 mg NAR were isolated from 1 g of material at conditions: conventional extraction, 120 min, albedo, 60 % ethanol, material to solvent ratio 1/50 g/mL and 60 °C. The simple procedure of conventional extraction shows results comparable to more sophisticated methods such as extraction with microwave and ultrasound. Taguchi experimental design was proved to be an efficient methodology to determine the optimal conditions and the parameters that significantly influence product properties. The second part of the investigation focuses on the characterization of mandarin and pommelo peel extracts and their antioxidant properties. Radical scavenging activity against DPPH and antioxidant capacity of lipid soluble and water soluble compounds were determined for mandarin and pommelo extracts. Taguchi experimental design was applied for determination of the influence of extraction parameters on antioxidant properties. The optimal conditions to prepare extracts with high antioxidant properties were also determined. In the third part the investigation focuses on the concentration and separation of citrus flavonoids by extraction with supercritical fluids. Supercritical CO2 was applied for the separation of polymethoxylated flavones (PMF) and flavanone glycoside from mandarin peels. The optimal conditions and the parameter influence on the separation were determined by using Taguchi experimental design. The influence of supercritical fluid extraction parameters on material pre-treatment and isolation of flavonoids was studied. These investigations show that supercritical CO2 is a potential solvent for isolation and separation of PMF from mandarin peels. The fourth and last part of the investigation focuses on the concentration of flavonoids in extract solutions. Since membrane separation processes are very interesting concentration methods in industry, microfiltration, ultrafiltration, nanofiltration and revese osmosis were used for concentration of mandarin and pommelo peel extract solutions. Microfiltration and ultrafiltration could be used in the separation steps after extraction, since they did not influence the amount of dry material and valuable compounds in tested solutions. Reverse osmosis and nanofiltration were shown as useful methods for separation of solvent from extract solutions.
Keywords: Flavonoids, hesperidin, naringin, citrus peels, mandarin (Citrus reticulata), pommelo (Citrus maxima), conventional extraction, supercritical fluid extraction, membrane separation processes, Taguchi experimental design
Published in DKUM: 22.04.2013; Views: 3612; Downloads: 459
.pdf Full text (10,49 MB)

Chemical composition of Juniperus communis L. fruits supercritical CO2 extracts: dependence on pressure and extraction time
Branislava Barjaktarović, Milan Sovilj, Željko Knez, 2005, original scientific article

Abstract: Ground fruits of the common juniper (Juniperus communis L), with a particle size range from 0.2500.400 mm, forming a bed of around 20.00 +/- 0.05 g, were extracted with supercritical CO2 at pressures of 80,90, and 100 bars and at a temperature of 40 De. The total amount of extractable substances or global yield (mass of extract/mass of raw material) for the supercritical fluid extraction process varled from 0.65 to 4.00"10 (wt). At each Investigated pressure, supercriticaI CO2 extract fractions collected In successive time intervals over the course of the extraction were analyzed by capillary gas chromatography, using flame ionization (GO-FIO) and mass spectrometric detection (GC-MS). More than 200 constituents were detected In the extracts, and the contents of 50 compounds were reported in the work. Dependence of the percentage yields of monoterpene, sesquiterpene, oxygenated monoterpene, and oxygenated sesquiterpene hydrocarbon groups on the extraction time was investigated, and conditions that favored the yielding of each terpene groups were emphasized. At all pressures, monoterpene hydrocarbons were almost completely extracted from the berries in the first 0.6 h. It was possible to extract oxygenated monoterpenes at 100 bar in 0.5 h and at 90 bar in 1.2 h. Contrary to that, during an extraction period of 4 h at 80 bar, it was possible to extract only 75% of the maximum yielded value of oxygenated monoterpene at 100 bar. Intensive extraction of sesquiterpenes could be by no means avoided at any pressure, but at the beginning of the process (the first 0.5 h) at 80 bar, they were extracted about a and 3 times slower than at 100 and 90 bar, respectively. Oxygenated sesquiterpenes were yielded at fast, constant extraction rates at 100 and 90 bar In 1.2 and 3 h, respectively. This initial fast extraction period was consequently foIlowed by much slower extraction of oxygenated sesquiterpenes.
Keywords: chemical processing, high pressure technology, CO2, supercritical fluid extraction, pressure, extraction time, Juniperus communis, oxygenated terpenes, juniper berry oil, carbon dioxide
Published in DKUM: 01.06.2012; Views: 1923; Downloads: 53
URL Link to full text

Search done in 0.1 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica