| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 18
First pagePrevious page12Next pageLast page
1.
Enhancing strength and ▫$CO_2$▫ uptake in lignite-based fly ash geopolymer mortar through supercritical carbonation
Tinkara Marija Podnar, Željko Knez, Gregor Kravanja, 2025, original scientific article

Abstract: This study demonstrates the potential of supercritical CO₂ curing to enhance the performance and sustainability of lignite-based fly ash geopolymer mortar offering a promising approach to reducing CO₂ emissions in the construction industry while improving material properties. The research comprehensively compared conventional curing (GEO-REF) with supercritical CO₂ curing (GEO-CO₂), revealing that GEO-CO₂ samples exhibited higher compressive and flexural strengths, achieving peak performance almost immediately after curing. Supercritical CO₂ exposure resulted in enhanced carbonation, with a depth of up to 7.6 mm and a carbonation rate of up to 67 %. XRD confirmed phase changes due to CO₂ curing, with GEO-CO₂ showing additional calcium carbonate-calcite, calcium carbonate-aragonite, and calcium silicate hydroxide compared to GEO-REF. Nitrogen adsorption/desorption studies indicated larger pore diameters but a reduced BET surface area in GEO-CO₂ samples, suggesting structural changes due to CO₂ exposure. TGA analysis revealed that supercritical CO₂ curing reduced water retention and enhanced carbonation, resulting in increased CaCO₃ content and changes in Ca(OH)₂ levels.
Keywords: geopolymer, fly ash, carbonation, CO2 fixation, supercritical CO2, high pressure reactor
Published in DKUM: 25.07.2025; Views: 0; Downloads: 3
.pdf Full text (6,51 MB)

2.
3.
Carbonization of Class G well cement containing metakaolin under supercritical and saturated environments
Gregor Kravanja, Željko Knez, 2023, original scientific article

Keywords: well cement, carbonization, metakaolin, supercritical CO2, gas saturated solution, CaCo3
Published in DKUM: 15.04.2024; Views: 187; Downloads: 88
.pdf Full text (14,25 MB)
This document has many files! More...

4.
5.
Extraction and separation of active compounds by supercritical fluids extraction and preparative supercritical chromatography
Alejandro Bartolome Ortega, 2017, doctoral dissertation

Abstract: This doctoral dissertation is focused on the benefits of supercritical fluids technology in several industry processes. Although, supercritical CO2 is currently the most employed supercritical fluid at laboratory scale, its presence in the industry field is still limited, due to the necessity of high investment costs. Despite that fact, operations with supercritical CO2 are cheap, environmentally friendly and simple, which make it an excellent alternative to organic compounds. Extraction and separation of highly pure active compounds, such as xanthohumol or beta-sitosterol, are demanded for pharmaceutical or food industries, which create an excellent opportunity for supercritical CO2 operations, since they are solvent free. This manuscript is divided into three different parts. In the first part, conventional extraction processes and supercritical fluid process are theoretically compared and supercritical fluid extraction from saw palmetto berries is presented. In the second part, conventional chromatographic techniques and supercritical fluid chromatography are theoretically compared and separation of xanthohumol from hop extracts by supercritical fluid chromatography is presented. In the last part, different encapsulation and emulsification processes are listed and defined. These processes are very important for food and pharmaceutical companies, since several active compounds are not water soluble which create the necessity of different formulations in order to be solved in an appropriate media. Regarding the experimental part, extractions from saw palmetto berries were performed at various pressures and temperatures, which were higher than the ones that were applied in previous studies, in order to estimate and calculate different parameters (solubility, extraction kinetic curves, composition,…), and to compare different studies. Separation of xanthohumol was carried out in a homemade supercritical chromatography, which manageable variables were temperature, pressure, mass flow-rate, modifier, and stationary phase. The results were compared with those ones which were obtained using conventional techniques, in order to prove the suitability and the improvement of this technique against others tecniques.
Keywords: supercritical CO2, supercritical fluid extraction, supercritical fluid chromatography, xanthohumol, saw palmetto berries, Beta-Sitosterol, encapsulation
Published in DKUM: 13.07.2017; Views: 2243; Downloads: 262
.pdf Full text (3,20 MB)

6.
Thermodynamic and physical properties for high pressure process design
Maša Knez Marevci, 2014, doctoral dissertation

Abstract: The thesis is comprised of three main categories. The first part of dissertation covers investigations of phase equilibria of compounds from natural materials in conventional and also non conventional supercritical fluids. In details, the impact of pressure and/or temperature on the system behaviour (miscibility, solubility, phase inversion) is investigated, quantitative and qualitative analyses to evaluate and identify compounds contained after performing preliminary extraction experiments from different natural tissues are presented. The impact of operating parameters (pre-treatment of the raw material with SFE; different extraction solvents: propane, CO2, non conventional SCFs; different extraction temperatures and pressures) on extraction kinetics is observed. Following substances were taken into consideration: vanillins, caffeine, carnosoic acid extract and lecithin. Second part of dissertation covers studies of phase equilibria of the systems bio oil/gas, which is crucial in biorefinery process design. In this part of dissertation, which covers studies of phase equilibria of binary and ternary systems, the impact of pressure and/or temperature on the system behaviour (miscibility, solubility, phase inversion) for binary system bio oil/supercritical fluid (bio oil/CO2) and (bio oil/H2) was studied. Additionally, phase behaviour of ternary systems of (bio oil/diesel/CO2) and (bio oil/tail water/CO2) under the impact of pressure and/or temperature is observed. These data are of a high importance for bio refineries as an important part of necessary sustainable development. In recent years, studies on biodiesel synthesis have focused on development of process intensification technologies to resolve some of these issues. Fundamental data to design fractionation process of components of bio oil are crucial for an efficient hydrogenation process of bio oil. In the third part of dissertation observation of phase equilibria and determination of the parameters like diffusion coefficient, density and viscosity for the systems polymer/CO2 at elevated pressures is investigated. An overview of different methods applied to determine the parameters like diffusion coefficient, density and viscosity of the systems polymer (PEG)/CO2 at elevated pressures is offered. Observation of phase equilibria of the binary system PEG/CO2, determination of the impact of pressure and/or temperature on the system behaviour (miscibility, solubility, phase inversion), determination of thermodynamically and physically properties of the system with new applicative methods and finally, comparison of the results obtained by different methods is provided. The interfacial tension (IFT) at the (PEG)/CO2 interface has been determined by using an experimental technique developed to study the interfacial interactions of the liquids in equilibrium with gas in a glass-windowed equilibrium cell by the means of Capillary Rise (CR) method. Advantages and disadvantages of methods that were applied are exposed and discussed.
Keywords: phase equilibria, natural materials, conventional and non conventional supercritical fluids, extraction, bio oil, data for biorefinery process design, systems polymer (PEG)/CO2, diffusion coefficient, density, viscosity, surface tension, Capillary Rise (CR) method.
Published in DKUM: 28.10.2014; Views: 2968; Downloads: 414
.pdf Full text (4,46 MB)

7.
Estimation of solid solubilities in supercritical carbon dioxide: Peng-Robinson adjustable binary parameters in the near critical region
Mojca Škerget, Zorka Novak-Pintarič, Željko Knez, Zdravko Kravanja, 2002, original scientific article

Abstract: The density dependence of the binary parameters of the Peng-Robinson equation of state in near the critical region was examined. Published solubility data of eight compounds in pure CO2 have been fitted to the Peng-Robinson equation in combination with one and two parameters van der Waals mixing rules and in combination with the three parameter density dependent mixing rule of Mohamed and Holder. A systematic study has been done to determine the influence of different terms in the mixing rules. In order to obtain density dependence, binary parameters were calculated for each isotherm at particular experimental point separately in the way to equalise experimental and calculated solubility data. The system was formulated as an equation-oriented model and solved by means of a nonlinear programming optimisation algorithm. For all compounds the binary interaction parameters thus obtained were found to vary strongly with pressure in the range from 75 bar to approximately 150 bar, i.e. near the critical end point (CEP) of the low temperature branch of the three phase solid-liquid-gas (SLG) curve. At higher pressures, the parameter is practically independent on pressure. In general, for the systems investigated, kij increases linearly with increasing density and reaches a constant value at higher densities in the range from 700 to 800 kg/m3, depending on the system under investigation.
Keywords: solid liquid equilibria, equation of state, mixing rules, binary parameters, near critical region, nonlinear programming, thermodynamic model, supercritical fluids, CO2, solubility
Published in DKUM: 01.06.2012; Views: 2331; Downloads: 125
URL Link to full text

8.
Silica aerogels as support for lipase catalyzed esterifications at sub- and supercritical conditions
Zoran Novak, Maja Leitgeb, Vlasta Krmelj, Željko Knez, 2003, original scientific article

Abstract: The enzymes (lipases from Candida rugosa and porcine pancreas) were immobilized on silica aerogels by sol-gel procedure followed by supercritical drying with CO2. Such immobilized enzymes were used as biocatalysts for esterification in supercritical CO2 and near critical propane at 40 °C and 100 bar. It was found out that the initial reaction rates in propane rose two to three times in comparison with the same reaction, catalyzed by free lipase. SC CO2 deactivated the non-immobilized lipase in reaction mixture while with the immobilized enzyme the conversion was 35%. The initial reaction rates in propane were 20 times higher than in water medium due to the properties of propane as a medium for esterification of fatty acids.
Keywords: chemical processing, biotechnology, esterification, immobilization of enzymes, supercritial CO2, propane, lipases, supercritical CO2 drying
Published in DKUM: 01.06.2012; Views: 1880; Downloads: 31
URL Link to full text

9.
Phase equilibria in systems containing [alpha]-tocopherol and dense gas
Mojca Škerget, Petra Kotnik, Željko Knez, 2003, original scientific article

Abstract: Solubility of ▫$alpha$▫-tocopherol in CO2 and propane was determined at temperatures 303, 313, 333 and 353 K and over a pressure range from 79 to 286 bar for CO2 and 16 to 112 bar for propane. A static-analytic method was applied. The solubility of ▫$alpha$▫-tocopherol in dense CO2 under the conditions investigated was in the range of 0.2-17.0 mg/g CO2. The maximal solubilities of ▫$alpha$▫-tocopherol in propane were approximately up to ten times higher than in CO2 and were in the range from 38.9 to 171.9 mg/g propane. Phase equilibrium data for Milk Thistle seed oil in supercritical CO2 were determined at temperatures 313, 333 and 353 K and pressures ranging from 100 to 300 bar. The oil was previously additionally vitaminized and contained 1.9 wt.% of ▫$alpha$▫-tocopherol and 1.7 wt.% of free fatty acids (FFA). The solubility of oil in CO2 was in the range from 1.3 to 17.9 mg/g CO2. The distribution coefficients of ▫$alpha$▫-tocopherol and FFA between light and heavy phase were determined on a solvent free basis. The obtained separation factors increased with temperature and pressure to approximately 160-200 bar and decreased with a further increase of pressure.
Keywords: chemical processing, supercritical fluids, phase equilibria, separation factors, vitamin E, CO2, dense gases
Published in DKUM: 01.06.2012; Views: 2039; Downloads: 45
URL Link to full text

10.
Preparation of WO[sub]3 aerogel catalysts using supercritical CO[sub]2
Zoran Novak, Petra Kotnik, Željko Knez, 2004, original scientific article

Abstract: Single tungsten oxide aerogels (WO3), binary oxide aerogels (WO3-Al2O3) and ternary oxide aerogels (WO3-SiO2-Al2O3) were prepared using standard sol-gel route. Tungsten oxide tetraethoxide (WO(OCH2CH3)4) was used as the sol-gel precursor. The excellent properties of the gels obtained by the sol-gel synthesis were preserved upon supercritical drying with CO2. After supercritical drying at 40 °C and 100 bar, all aerogels were calcined to 800 °C. The influence of the synthesis parameters on the catalytic activity of WO3as supported on silica andžor alumina aerogels was investigated through thetransformation of N-(phosphonomethyl)iminodiacetic acid to N-(phosphonomethyl)glycine. Despite including WO3 into single and mixed silicaand alumina aerogels, high specific surface areas (284-653 m2 g-1) were preserved. Higher conversion was obtained for catalysts with higher ratios of WO3 in the mixed silica-alumina aerogels that were calcined at 800 °C.
Keywords: chemical processing, aerogels, catalysts, tungsten oxides, preparation of aerogels, characterisation of aerogels, supercritical CO2, supercritical drying, high pressure technology
Published in DKUM: 01.06.2012; Views: 2113; Downloads: 53
URL Link to full text

Search done in 0.14 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica