| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 101
First pagePrevious page12345678910Next pageLast page
1.
Avtomatizirano trgovanje z uporabo pametnega predikcijskega modela
Luka Štrakl, 2021, master's thesis

Abstract: V magistrskem delu je opisano področje avtomatiziranega trgovanja z algoritmičnim pristopom, ki temelji na odločitvah napovednih modelov, katerih znanje je pridobljeno s pomočjo strojnega učenja. Opisane je delo z podatki, metode strojnega učenja in izdelava napovednih modelov v programskem jeziku Python. Poudarek je na pridobivanju, manipulaciji in uporabi vhodnih podatkov, ter optimizaciji napovednega modela za dosego boljših odločitev na še ne videnih podatkih. V sklopu magistrske naloge smo izdelali programsko opremo algoritmične narave, ki uporablja sožitje pogojev, ki jih trgovalni instrument mora zadovoljiti, ter odločitve dveh napovednih modelov za odpiranje ali zapiranje trgovalnih pozicij.
Keywords: Trgovanje, Forex, delnice, strojno učenje, napovedni model
Published: 13.05.2021; Views: 60; Downloads: 24
.pdf Full text (3,75 MB)

2.
Ogrodje NiaAML za samodejno strojno učenje
Luka Pečnik, 2021, master's thesis

Abstract: V magistrskem delu smo raziskali področje samodejnega strojnega učenja in natančneje metodo za samodejno strojno učenje, imenovano NiaAML. Osredotočili smo se predvsem na iskanje klasifikacijskih cevovodov s pomočjo stohastičnih populacijskih algoritmov po vzorih iz narave. S pomočjo programskega jezika Python in knjižnic, ki jih ponuja, smo razvili istoimensko ogrodje za samodejno strojno učenje NiaAML, namenjeno iskanju in optimizaciji klasifikacijskih cevovodov. V ogrodju smo metodo NiaAML poskusili še izboljšati, nato pa smo primerjali rezultate med originalno in spremenjeno metodo NiaAML.
Keywords: algoritmi po vzorih iz narave, klasifikacijski cevovodi, samodejno strojno učenje
Published: 17.02.2021; Views: 177; Downloads: 49
.pdf Full text (885,17 KB)

3.
Razvoj metodologije za avtomatično klasifikacijo elektronskih publikacij v univerzalno decimalno klasifikacijo – udk24112018
Matjaž Kragelj, 2019, doctoral dissertation

Abstract: Čeprav so znanstveni in strokovni članki večinoma bibliografsko obdelani in imajo zapis v knjižničnem katalogu COBIB, ter s tem definiranega enega ali več vrstilcev iz sistema Univerzalne decimalne klasifikacije (UDK), je večina člankov, dostopnih prek portala Digitalne knjižnice Slovenije, predvsem s področja kulture (starejši članki iz revij in časopisov), ki takšnega zapisa nimajo. Na spletnem mestu Digitalne knjižnice Slovenije je mogoče preiskovanje dokumentov zgolj po polnem besedilu. To je trenutno najboljše orodje za preiskovanje starejših besedil, a uporaba in preiskovanja publikacij na tak način, zaradi pomanjkljivosti (slabša kvaliteta razpoznave besedila v časopisih in revijah starejšega tipa, uporaba stare slovenščine, itd.) in prevelikega števila vrnjenih zadetkov pri iskanju, ne nudi sodobne uporabniške izkušnje in uporabniku otežuje delo. Osnovni problem, ki ga naslavljamo v disertaciji je pomoč pri bibliografski obdelavi besedil, ki je še vedno v rokah človeških ekspertov. Izhajamo iz teze, da je s pomočjo metod strojnega učenja možno avtomatsko klasificirati besedila v ustrezen UDK vrstilec in s tem podpreti človeka pri bibliografski obdelavi zapisov. V ta namen smo po pristopu načrtovanja in razvoja razvili klasifikacijski model, ki smo ga uporabili za klasificiranje starih besedil, ki so bila doslej klasificirana večinoma zgolj posredno, preko klasifikacije celotne revije oz. časopisa, kot na primer "Časopisi. Tisk. Novinarstvo". V disertaciji smo razvili klasifikacijski model s pomočjo metod strojnega učenja, s katerimi smo uspeli avtomatsko klasificirati kakršnokoli besedilo s pomočjo Univerzalne decimalne klasifikacije. Med tehnikami strojnega učenja smo se poslužili nenadzorovanega in nadzorovanega učenja. V prvem koraku smo nad manjšo množico podatkov (900 člankov) nenadzorovano učenje uporabili za preverjanje sorodnosti med dodeljenimi UDK vrstilci s strani bibliotekarjev in izgrajenimi gručami s strani algoritma. V drugem koraku smo nad celotnim korpusom znanstvenega časopisja Digitalne knjižnice Slovenije (več kot 70.000 znanstvenih besedil) razvili klasifikacijske modele, kjer je bilo razmerje učne in testne množice je bilo 80/20 odstotkov. Ko smo potrdili uspešnost klasifikacijskih modelov nad znanstvenimi besedili, smo jih uporabili za klasifikacijo več kot 200.000 starejših besedil. Uporabili smo Naivni Bayesov klasifikator, Metodo podpornih vektorjev, Večslojni perceptron, Logistično regresijo in algoritem k najbližjih sosedov. Ustreznost klasifikacije starih besedil smo preverili s človeškimi eksperti – bibliotekarji. Potrdili smo domnevo, da lahko s pomočjo znanstvenih in strokovnih člankov, klasificiranih v UDK, v vsaj 80% primerov ponudimo avtomatsko določene UDK vrstilce za starejše gradivo, ki ni bibliotekarsko obdelano. Poudariti velja, da gre pri tem delu za človeško odločitev, testiranje s človeškimi eksperti, za oceno in presojo, ki lahko variira od odločevalca do odločevalca. Poleg oplemenitenja starejših besedil iz osemnajstega, devetnajstega in prve polovice dvajsetega stoletja s vsebinskimi oznakami UDK vrstilcev, ima raziskava praktično moč v vsakodnevni rabi. Z gledišča podpore avtomatske klasifikacije publikacij pri vsakodnevnem delu bibliotekarjev, vidimo moč implementacije raziskave v informacijski sistem, ki je bibliotekarju sposoben v realnem času ponuditi izračunane predloge za določitev primernih klasifikatorjev publikacije, ki jo obdeluje. Bibliotekar lahko pridobi s strani stroja "drugo mnenje" pri procesu dodeljevanja UDK vrstilcev publikaciji, ki jo obdeluje. Hkrati je metodologija lahko uporabljena na različnih področjih in podatkovnih bazah ter klasifikacijskih sistemih, ne zgolj za dodeljevanje UDK vrstilcev.
Keywords: Umetna inteligenca, strojno učenje, podatkovno rudarjenje, Univerzalna decimalna klasifikacija, klasifikacija besedil
Published: 03.02.2021; Views: 133; Downloads: 22
.pdf Full text (4,35 MB)

4.
Ocenjevanje zaupanja v globokih nevronskih mrežah
Daniel Hari, 2020, master's thesis

Abstract: V magistrskem delu so predstavljeni pristopi ocenjevanja zaupanja v globokih nevronskih mrežah na primeru razpoznave števk. Ti pristopi nam omogočajo izboljšavo kakovosti razpoznave števk, s čimer se približamo natančnosti človeka, ki za bazo MNIST znaša 97,5–98 %. V delu se bomo osredotočili predvsem na dva pristopa, in sicer z Bayesovim učenjem in vzorčenjem z izpustnimi sloji. Bayesovo učenje je matematično bolj zahteven postopek, saj deluje tako, da vsak vhodni podatek v nevronsko mrežo obravnavamo kot porazdelitev verjetnosti in ne kot deterministično določeno vrednost. Pri tehniki vzorčenja z izpustnimi sloji je za vsakim skritim slojem mreže dodan stohastični izpustni sloj, tako da lahko na izhod iz modela gledamo kot na naključni vzorec, ki je ustvarjen iz aposteriorne porazdelitve. Takšen postopek je sicer računsko manj zahteven, daje pa podoben rezultat. Magistrsko delo je sestavljeno iz teoretičnega in eksperimentalnega dela. V teoretičnem delu so predstavljeni pojmi, kot so umetna inteligenca in sestava nevronske mreže ter podroben opis Bayesovega učenja in vzorčenja z izpustnimi sloji. V eksperimentalnem delu so prikazani pristopi razpoznave števk z Bayesovim učenjem in pristopi, ki uporabljajo tehnike vzorčenja z izpustnimi sloji. Podana je tudi primerjava postopkov.
Keywords: umetna inteligenca, Bayesov pristop, izpustni sloji, strojno učenje.
Published: 29.01.2021; Views: 134; Downloads: 36
.pdf Full text (2,94 MB)

5.
Razpoznavanje človeških emocij na digitalnih posnetkih s pomočjo konvolucijskih nevronskih mrež
Aleš Pernat, 2020, master's thesis

Abstract: V magistrskem delu smo se ukvarjali z razvrščanjem šestih osnovnih človeških emocij in nevtralnega izraza s pomočjo digitalnih posnetkov in konvolucijskih nevronskih mrež. Pregledali smo področje razpoznavanja človeških emocij in natančno preučili konvolucijske nevronske mreže. Implementirali smo več modelov sodobnih konvolucijskih nevronskih mrež, ob tem pa razvili tudi lastne modele. Uporabili smo knjižnico Tensorflow in programski jezik Python. Naše predlagane rešitve smo preizkusili na prosto dostopnih podatkovnih zbirkah CK+, MMI in JAFFE. Slike iz podatkovnih zbirk smo obogatili z zrcaljenjem in rotiranjem, tako da smo dobili večjo količino podatkov. Za validiranje smo uporabili pristop, neodvisen od subjekta, in petkratno navzkrižno validacijo. Najboljši rezultati razvrščanja z našimi predlaganimi metodami so bili 91,65 % na zbirki CK+, 59,08 % na zbirki MMI in 67,86 % na zbirki JAFFE. Rezultati na zbirki CK+ so primerljivi z rezultati sorodnih del, na preostalih dveh zbirkah pa je uspešnost razvrščanja z našimi pristopi bistveno slabša od rezultatov sorodnih del.
Keywords: človeške emocije, konvolucijske nevronske mreže, digitalne slike, strojno učenje
Published: 04.01.2021; Views: 113; Downloads: 28
.pdf Full text (1,30 MB)

6.
Strojno učenje za podporo bolj učinkovitega postopka diagnoze bolezni
Jure Kučer, 2020, master's thesis

Abstract: Razširjenost trenda masovnega hranjenja podatkov na različnih področjih znanosti omogoča vse naprednejšo uporabo metod strojnega učenja za iskanje novega znanja. Magistrsko delo zajema predstavitev osnovnih konceptov in tehnik za obdelavo podatkov, obravnavo manjkajočih vrednosti in končno uporabo pri učenju popularnejših algoritmov strojnega učenja z namenom klasifikacije laboratorijskih meritev pacientov. Primerjani sta uspešnost klasifikacijskih modelov naivni Bayes, k-najbližjih sosedov, odločitveno drevo, metoda podpornih vektorjev, naključni gozd, nevronska mreža, Adaboost in Adabagg ter vpliv metod podvzorčenja, nadvzorčenja in SMOTE za balansiranje učnih podatkov. Implementiran je tudi grafični vmesnik za vnos meritev, klasifikacijo, pregled rezultatov in pomembnosti lastnosti.
Keywords: strojno učenje, diagnoza bolezni, klasifikacija, diabetes
Published: 04.01.2021; Views: 111; Downloads: 28
.pdf Full text (2,18 MB)

7.
Uporaba metod strojnega učenja za izboljšanje spletnega vprašalnika
Duško Rodić, 2020, master's thesis

Abstract: Zbiranje podatkov preko spletnega vprašalnika je v današnjem času pravzaprav stalnica, saj gre za hiter in učinkovit način za zajemanje podatkov iz širše populacije. Pogosto pa so vprašalniki predolgi in tudi kompleksne, zato ne zajemamo ciljne populacije in ne dobimo prave slike o raziskovanem stanju. Poseben primer je zajemanje podatkov z namenom ocene primernosti uporabe zalo-zmogljivega računalništva v oblaku za mala in srednje velika podjetja. Ta vprašalnik je namenjen zajemu vhodnih podatkov za večkriterijski model, ki omogoča oceno potenciala, ki v praksi ni v celoti zaživel. Izhajamo iz predpostavke, da je tudi kompleksnost vprašalnika vplivala na šibek odziv respondentov. Iz tega smo razvili raziskovalno vprašanje: »Ali je mogoče vprašalnik skrajšati s pomočjo strojnega učenja?«. Cilj magistrske naloge je, da s pomočjo metod strojnega učenja skušamo ugotoviti katera vprašanja največ prispevajo k oceni potenciala ter na ta način skrajšati vprašalnik. Problem smo reševali z uporabo metod strojnega učenja. V ta name smo analizirali večkriterijski model, vprašalnik za zajemanje podatkov, odgovore respondentov ter v programu Orange , ki poleg metod strojnega učenja vsebuje tudi vizualizacijo podatkov, IV analizirali prispevek posameznega vprašanja h končni oceni. Rezultati kažejo, da imajo nekateri kriteriji večji vpliv na končno oceno potenciala uporabe zelo-zmogljivega računalništva v oblaku, vendar se ti kriteriji nanašajo na splošne atribute primerov (npr. država, vrsta organizacije). Ob izločitvi trivialnih kriterijev napoved modela še vedno ni dovolj natančna, zato je edini zaključek, ki ga lahko potegnemo, da na pričujočih podatkih ni bilo možno izbrati takega nabora kriterijev oziroma vprašanj, s katerimi bi lahko natančno ocenili potencial uporabe zelo-zmogljivega računalništva v oblaku.
Keywords: - zelo-zmogljivo računalništvo, - oblak, - strojno učenje, - podatkovno rudarjenje, - Orange (program).
Published: 23.12.2020; Views: 141; Downloads: 16
.pdf Full text (4,63 MB)

8.
Umetna inteligenca – trenutni in prihodnji izzivi bančništva
Jasmina Gergorec, 2020, undergraduate thesis

Abstract: Uporaba orodij za umetno inteligenco se je v zadnjem času stopnjevala v vseh gospodarskih panogah, med drugim tudi zaradi naraščajočega obsega digitalnih podatkov in vse večje računalniške zmogljivosti. Umetna inteligenca spreminja vse vidike poslovanja, tudi v bančništvu. Banke si danes ne morejo več privoščiti dolge čakalne vrste in pogoste obiske njihovih poslovalnic. Potrebujejo preobrazbo, da bi lahko sledile pričakovanjem svojih strank. Poglobljeno in strojno učenje so izboljšale izkušnje s strankami. Umetna inteligenca vključuje obdelavo naravnega jezika, prepoznavanje govora in strojni vid. Na izbiro imamo več vrst tehnik, ene izmed teh so: nevronske mreže, genetski algoritem ali mehka logika. Motivi za uvajanje umetne inteligence v bančništvo so predvsem odpravljanje človeških napak, boljši regulativni nadzor, hitrejše prepoznavanje in obvladovanje tveganj, prepoznavanje goljufij, boljša finančna varnost, kar se odraža pri nižjih stroških poslovanja ter predstavlja konkurenčno prednost posamezne banke.
Keywords: Umetna inteligenca, bančništvo, chatbot, strojno učenje, obdelava naravnega jezika
Published: 30.11.2020; Views: 196; Downloads: 53
.pdf Full text (620,32 KB)

9.
Uporaba umetne inteligence v rešitvah crm na primeru rešitve salesforce
Nina Belšak, 2020, undergraduate thesis

Abstract: Kupec je najpomembnejši del prodajnega procesa, saj brez kupca ni prodaje in brez prodaje ni dobička. Zato je upravljanje odnosov s kupci, skrajšano CRM, bil in bo ostal eden najpomembnejših pojmov na področju prodaje. Skozi leta se je prodajni proces spreminjal, z njim pa so se spreminjale zahteve in pričakovanja strank. Zaradi vedno večjih zahtev strank, velikih količin podatkov in vedno več dela, so nastali prvi CRM sistemi. V prvem delu diplomske naloge bo podrobneje opisano celotno področje upravljanja odnosov s strankami. Opisane bodo funkcionalnosti, vrste, prednosti in slabosti ter cilji in trendi CRM rešitev. V zadnjih letih je vedno pogostejši CRM v oblaku, preko katerega se povežemo s pomočjo internetne povezave. Sistemi, ki temeljijo na oblaku, omogočajo hitrejše, enostavnejše in cenejše prilagajanje spremembam. Zato jih je lažje integrirati tudi z drugimi aplikacijami. V drugem delu bo opisana integracija CRM-ja z AI. AI oziroma umetna inteligenca pomeni zmožnost posnemanja človeških reakcij, dejanj in čustev s pomočjo strojev, robotov in računalnikov. AI rešitev CRM rešitev nadgrajuje s svojimi naprednimi funkcijami, kot so: strojno učenje, globoko učenje, avtomatizacija procesov, napovedi prodaje in uspešnih poslov, prilagojeni klepeti, obdelava naravnega jezika, strojni vid, čustvena analitika in mnoge druge. Na koncu diplomske naloge bo predstavljeno podjetje Salesforce, ki je globalna in vodilna platforma za CRM, uporablja pa jo več kot 150.000 podjetij po vsem svetu. Je sistem, s samostojnimi aplikacijami za prodajo, ki temeljijo na oblaku, zato jih lahko na enostavne načine integriramo z zunanjimi aplikacijami, kot so e-pošta in socialni mediji. Ena izmed najvplivnejših rešitev Salesforca je Einstein. Salesforce Einstein pozitivno vpliva na področja marketinga, prodaje in storitev za stranke. Opisane bodo zmogljivosti in prednosti, ki jih rešitev Salesforce Einstein predstavlja za različna podjetja. Je eden izmed primerov umetne inteligence integrirane z rešitvijo CRM.
Keywords: Upravljanje odnosov s strankami, Umetna inteligenca, Salesforce, Einstein, Strojno učenje, Globoko učenje, Sistem v oblaku, Prodajni proces
Published: 24.11.2020; Views: 195; Downloads: 67
.pdf Full text (1,31 MB)

10.
Uporaba vektorske vgradnje za inteligentno obdelavo slovenskega besedila
Urban Strnišnik, 2020, master's thesis

Abstract: V sklopu magistrske naloge smo se najprej osredotočili v problematiko pridobivanja uporabnega znanja iz nestrukturiranega besedila. Po poročilih IDC je razmerje med strukturiranimi in nestrukturiranimi podatki vsako leto večje. Načinov pridobivanja uporabnega znanja iz nestrukturiranega besedila je več, ena izmed njih so besedne vložitve oz. vektorska vgradnja. Najprej smo se posvetili pregledu tehnik besednih vložitev, kaj to je in kaj z njimi dosežemo. Ugotovili smo, da da izraz besedna vložitev stoji za določitvijo vektorske vrednosti besedi, s katero lahko izvajamo nadaljnje računske operacije. Namen magistrske naloge je bil preizkusiti nekatere algoritme vektorske vgradnje, izdelati lastne modele obdelave besedil in jih nato primerjati z nekaterimi že obstoječimi modeli. Lastne in obstoječe modele obdelave besedil smo nato preizkusili in na podlagi primerjave ugotovili prednosti in slabosti pri uporabi v določenem okolju. V sklopu učenja modelov smo se osredotočili tako v nadzorovane kot tudi v nenadzorovane tehnike učenja. Vhodni korpus podatkov smo pridobili iz pravilnikov štirinajstih slovenskih univerz in fakultet. Iz ugotovljenih rezultatov smo opravili analizo in diskusijo rezultatov, kjer smo dobili odgovore na zastavljena raziskovalna vprašanja, hipoteze pa sprejeli ali zavrnili.
Keywords: Besedne vložitve, strojno učenje, fastText, obdelava naravnega jezika, doc2vec, word2vec, klasifikacija besedila, nadzorovano učenje, nenadzorovano učenje
Published: 17.11.2020; Views: 122; Downloads: 32
.pdf Full text (3,65 MB)

Search done in 0.28 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica