| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 112
First pagePrevious page12345678910Next pageLast page
1.
Poslovni učinki rabe umetne inteligence v CRM na primeru rešitve Salesforce
Denis Gönc, 2021, master's thesis

Abstract: V magistrskem delu smo preučili rabo umetne inteligence (AI) v najbolj napredni rešitvi za upravljanje odnosov s strankami (CRM) Salesforce. Na konkurenčnem trgu kombinacija CRM-rešitve in AI omogoča, da podjetja izstopajo od povprečja in postanejo učinovitejša pri poslovanju ter zmanjšajo svoje stroške. Prodajnikom se s tem pristopom olajša delo, saj AI daje priporočila za najboljši naslednji korak, pripomore k oblikovanju nadzornih plošč in vpogledov ter omogoča izdelavo raznih napovednih modelov. Zaradi avtomatizacije se lahko osredotočajo na druga bolj pomembna opravila. CRM-rešitve so že v osnovi zelo napredne, vendar dodatek AI izboljša njihove zmogljivosti in podjetjem omogoča, da presežejo zastavljene cilje. V prvem delu magistrske naloge smo najprej preučili AI, predstavili njeno zgodovino, opisali področja rabe in najbolj znane ponudnike. Preučili smo tudi okrepitev varnosti in predpostavke različnih znanstvenikov o njenem razvoju v prihodnosti. V nadaljevanju smo preučili CRM-rešitve, njihove značilnosti, prednost in slabosti, zgodovino, trende ter opisali tudi njene največje ponudnike . V drugem delu smo opisali vodilno CRM-rešitev Salesforce, predstavili njene produkte, opisali skupne stroške lastništva teh produktov in utemeljili, zakaj spada med najbolj priljubljene CRM-rešitve na svetu. V nadaljevanju smo opisali Einstein AI, ki je vgrajena v jedro platforme Salesforce in s svojim naborom rešitev zagotavlja napredne zmogljivosti. Na koncu smo opisali 12 študij primerov, s katerimi smo ugotavljali, kako podjetja iz različnih panog uporabljajo Einstein AI v vodilni CRM-rešitvi in kakšne rezultate so s tem dosegli.
Keywords: umetna inteligenca, upravljanje odnosov s strankami, CRM, salesforce, Einstein AI, strojno učenje, globoko učenje, oblačna rešitev, študije primerov, poslovni učinki.
Published: 20.10.2021; Views: 37; Downloads: 6
.pdf Full text (1,92 MB)

2.
Metoda prilagodljivega uglaševanja slojev konvolucijskih nevronskih mrež pri strojnem učenju s prenosom znanja
Grega Vrbančič, 2021, doctoral dissertation

Abstract: V doktorski disertaciji predstavimo problematiko izbire uglaševanih slojev konvolucijskih nevronskih mrež pri strojnem učenju s prenosom znanja. Z izvedeno analizo vpliva izbire uglaševanih slojev konvolucijske nevronske mreže na uspešnost učenja potrdimo domnevo, da je primerna izbira uglaševanih slojev s ciljem doseganja visoke klasifikacijske uspešnosti odvisna od izbrane arhitekture konvolucijske nevronske mreže ter ciljnega problema oz. izbrane podatkovne zbirke. Z namenom naslovitve problema izbire uglaševanih slojev razvijemo in predlagamo prilagodljivo metodo DEFT, ki temelji na algoritmu diferencialne evolucije in deluje popolnoma samodejno, ne glede na uporabljeno arhitekturo konvolucijske nevronske mreže ali ciljni problem. Zaradi velike časovne kompleksnosti predlagane metode v nadaljevanju razvijemo in predlagamo na funkciji izgube temelječo metriko LDM, ki v zgodnji fazi učenja uspešno zaznava manj primerne izbire uglaševanih slojev, kar nam omogoča, da za zaznane manj primerne izbire uglaševanih slojev predčasno zaključimo učenje in na tak način zmanjšamo časovno zahtevnost predlagane metode. Uspešnost predlagane metode ovrednotimo z uporabo treh različnih arhitektur globokih konvolucijskih mrež nad tremi raznolikimi slikovnimi podatkovnimi zbirkami. Klasifikacijsko uspešnost predlagane metode z in brez uporabe metrike LDM smo primerjali s klasičnimi pristopi učenja globokih konvolucijskih nevronskih mrež. Primerjavo izvedemo z uporabo najpogostejših klasifikacijskih metrik, časom, potrebnim za učenje, ter porabljenim številom epoh. Rezultate smo preverili z uporabo klasičnih metod statistične analize kot tudi z naprednim pristopom Bayesove analize. Izsledki slednje so potrdili tezo, da je mogoče z uporabo metode prilagodljivega uglaševanja slojev konvolucijske nevronske mreže uspešno nasloviti problem izbire slojev ter da lahko z uporabo metrike LDM za zaznavo manj primernih izbir uglaševanih slojev učinkovito zmanjšamo število epoh, potrebnih za učenje, ob doseganju primerljivih rezultatov.
Keywords: strojno učenje, globoko učenje, učenje s prenosom znanja, klasifikacija, uglaševanje, optimizacija
Published: 19.10.2021; Views: 59; Downloads: 10
.pdf Full text (5,35 MB)

3.
Prepoznavanje objektov iz satelitskih slik z metodami globokega učenja na vgrajeni napravi
Martin Domajnko, 2021, undergraduate thesis

Abstract: V diplomskem delu rešujemo problem prepoznavanja prometa iz satelitskih slik. Cilj je bil uporabiti metode globokega učenja, pognati modele na izbranih vgrajenih napravah in doseči povprečno natančnost vsaj 75 % pri hitrosti izvajanja 5 sličic na sekundo. Za eksperiment uporabimo modela Faster R-CNN in SSD iz knjižnic Detectron2 ter TensorFlow Object Detection API. Fazi učenja in testiranja izvedemo na satelitskih slikah baze podatkov xView, katere predhodno razdelimo na učno in testno množico. Na učni množici izvedemo tudi bogatenje slik. Naučene modele preizkusimo na grafičnih karticah Nvidia GeForce GTX 970 ter Nvidia Titan X Pascal, na procesorju Intel Core i7-4790 in na vgrajenih napravah Intel Neural Compute Stick 2 ter Nvidia Jetson TX2. Preizkuse izvedemo s pomočjo skript napisanih v programskem jeziku Python3. Te izvozijo modele v posebno zamrznjeno stanje, jih optimizirajo za izvajanje na izbrani napravi in izmerijo njegovo hitrost ter natančnost. Najvišjo povprečno natančnost 37,33 % dosežemo z modelom Faster R-CNN iz knjižnice Detectron2. Z modelom SSD iz knjižnice TensorFlow Object Detection API na grafični kartici Nvidia GeForce GTX 970 dosežemo povprečno hitrost izvajanja 84,5 sličic na sekundo. Demonstrirana rešitev v diplomskem delu je primerna za izvajanje na vgrajenih napravah, a žal ni dovolj natančna. Za doseganje boljših rezultatov moramo našo rešitev izvajati na hitrejši strojni opremi, ki podpira večje ter s tem natančnejše modele.
Keywords: strojno učenje, globoko učenje, vgrajene naprave, prepoznavanje objektov, satelitske slike, računalniški vid
Published: 18.10.2021; Views: 22; Downloads: 2
.pdf Full text (34,13 MB)

4.
Značilnost okolja kuberflow
Domen Krasnič, 2021, undergraduate thesis

Abstract: V današnjih modernih časih je vedno več podatkov, ki nam omogočajo lažje odločitve. Iz različnih podatkov pridobimo različne informacije in vzorce, pomembne za našo prihodnost. Zaradi vse večjih količin podatkov so se razvile številne rešitve za obravnavo le-teh. Ena izmed rešitev, ki se je razvila, je strojno učenje, ki ima sposobnost reševanja kompleksnih problemov z različnih področij. V diplomskem delu je predstavljeno Kubeflow okolje in tematika, tesno povezana z njim.
Keywords: Kubeflow okolje, strojno učenje, Kubernetes
Published: 18.10.2021; Views: 26; Downloads: 4
.pdf Full text (2,80 MB)

5.
Delno nadzorovan meta klasifikator v programskem jeziku Python
Ingrid Mirnik, 2021, undergraduate thesis

Abstract: V zaključnem delu se ukvarjamo z razvojem delno nadzorovanega meta klasifikatorja in njegovim delovanjem. Namen zaključenega dela je predstaviti koristnost delno nadzorovane klasifikacije ter uporabo te na praktičnem primeru. Rešitev smo razvili s pomočjo programskega jezika Python in scikit-learn knjižnice. Pri preverjanju delovanja klasifikatorja smo se omejili na tri različne podatkovne množice, katerim se deleži označenih podatkov spreminjajo glede na test. Primerjali smo rezultate nadzorovanih in delno nadzorovanih klasifikatorjev, ki so se vrnili podobni. Ugotovili smo, da med rezultati nadzorovanih in delno nadzorovanih klasifikatorjev ni bistvene razlike, razen v časovni zahtevnosti, ki je občutno večja pri delno nadzorovanih klasifikatorjih.
Keywords: Python, delno nadzorovana klasifikacija, strojno učenje
Published: 18.10.2021; Views: 23; Downloads: 4
.pdf Full text (2,43 MB)

6.
Pametni pomočnik za vožnjo po dirkaški stezi na operacijskem sistemu android
Marko Watzak, 2021, undergraduate thesis

Abstract: Že vse odkar se je človek trudil naučiti stroj določenih veščin predvidevanja in lastne inteligence, je tukaj prisotno strojno učenje. Nemalo kdo je že velikokrat poprej prišel na misel, da bi lahko z uporabo strojnega učenja izboljšali različne športe, med drugim tudi avtomobilske. V tem diplomskem delu smo podali namen, kjer lahko skupaj s strojnim učenjem poskusimo izboljšati vožnjo posameznika na dirkaški stezi in to uspešno zabeležiti ter predstaviti na človeku razumljiv način. V našem delu smo opisali načine za reševanje problema, podali razvojna okolja in tehnologijo ter prikazali izsledke. Analizo vožnje je bilo mogoče uspešno izvesti in uspešno interpretirati dobljene rezultate v različnih scenarijih.
Keywords: OBD, OBD II, strojno učenje, Java, Android
Published: 18.10.2021; Views: 15; Downloads: 2
.pdf Full text (2,37 MB)

7.
Napoved vremena z uporabo strojnega učenja
Timi Vovk, 2021, undergraduate thesis

Abstract: Strojno učenje se vse bolj uporablja za napoved prihodnjih stanj. V diplomskem delu je preizkušenih več modelov strojnega učenja za napoved vremenskih parametrov s ciljem izdelave čim boljšega. Modeli v enem mahu napovedujejo terminsko zračno temperaturo ali globalno sevanje za prvo, dvanajsto in štiriindvajseto uro. Ustvarjenih je več modelov z različno arhitekturo. Ti so naučeni iz obdelanih in urejenih podatkov pridobljenih iz javno dostopnega arhiva vremena ARSO. V ospredju algoritmov nadzorovanega stojnega učenja sta Elastic Net in GRU. Arhitektura za izdelavo GRU modelov je zgrajena na podlagi predlaganih modelov drugih avtorjev. Najbolje se je izkazal model GRU (60, 30, 10).
Keywords: nadzorovano strojno učenje, GRU, Elastic Net, temperatura zraka, sončno sevanje
Published: 18.10.2021; Views: 18; Downloads: 4
.pdf Full text (1,96 MB)

8.
Celovit pregled orodij za samodejno strojno učenje
Tomi Milošič, 2021, undergraduate thesis

Abstract: V diplomski nalogi smo raziskali področje samodejnega strojnega učenja, osredotočili smo se na orodja za samodejno strojno učenje in poudarili njihove prednosti in slabosti na podlagi primerjave glede na različne nabore podatkov. Osredotočili smo se tudi na metodo klasifikacije, saj je to pogosta naloga strojnega učenja. Namen diplomske naloge je ugotoviti, katero orodje je najbolj optimalno za posamezno nalogo. Diplomsko nalogo smo razdelili na dva dela, in sicer teoretični del in praktični del. V teoretičnem delu smo se osredotočili na razjasnitev pojmov, zgodovino strojnega učenja in opis orodij samodejnega strojnega učenja. V praktičnem delu smo opravili primerjave med orodji in ugotovili, da le-ta vračajo podobne rezultate klasifikacije različno hitro. Ugotovili smo tudi, da so orodja namenjena uporabnikom, ki niso strokovnjaki na področju strojnega učenja, in da si orodja delijo skupne značilnosti.
Keywords: klasifikacija, strojno učenje, samodejno strojno učenje, umetna inteligenca
Published: 18.10.2021; Views: 19; Downloads: 6
.pdf Full text (1,37 MB)

9.
Razvoj klasifikacijskega modela za računalniško opremo
Bojan Perko, 2021, master's thesis

Abstract: Zaključna naloga obravnava načrtovanje in razvoj celovite rešitve, ki vključuje razvoj več razrednega klasifikacijskega modela in razvoj modelov razvrščanja v skupine z uporabo strojnega učenja. Glavni namen rešitve je nadomestitev ročnega uvrščanja podatkov o računalniških izdelkih v vnaprej določene skupine izdelkov, in sicer z avtomatizirano celovito rešitvijo, katere namen je izboljšanje procesa izračuna indeksa cen življenjskih potrebščin. Izdelki, razvrščeni v skupine, so namreč osnova za zajem podatkov pri izračunu indeksa cen življenjskih potrebščin, ki se uporablja za merilo inflacije. Rešitev smo razvili po metodologiji CRISP-DM, z uporabo različnih tehnologij, in sicer relacijske podatkovne baze Microsoft SQL Server, ogrodja .NET Core, ogrodja ML.NET in programskega jezika C#. Rezultat zaključnega dela je celovita rešitev, ki omogoča samodejno izvajanje napovedi oziroma klasifikacije podatkov o računalniških izdelkih ter v nadaljevanju združevanje teh podatkov v homogene skupine, hkrati pa preko aplikacijskega vmesnika uporabnikom omogoča nadzor nad izvajanjem delovanja rešitve. Rešitev, ki smo jo razvili v zaključni nalogi, pripomore k bolj konsistentni, kakovostni in učinkoviti obdelavi podatkov ter s tem olajša delo pri naročniku. Možnosti nadaljnjega razvoja se kažejo v več segmentih, pri čemer je bistvenega pomena uporaba večje količine podatkov in s tem bolj natančna klasifikacija.
Keywords: strojno učenje, klasifikacija, gručenje, ML.NET, podatkovna baza
Published: 18.08.2021; Views: 179; Downloads: 20
.pdf Full text (2,09 MB)

10.
Prepoznava štetja kart pri igri blackjack z metodami strojnega učenja
Aljaž Berčič, 2021, undergraduate thesis

Abstract: V tem diplomskem delu smo raziskali igro blackjack, strategije štetja kart, strojno učenje in metode za prepoznavo igralcev, ki štejejo karte. Blackjack je ena izmed najstarejših in najbolj priljubljenih igralniških iger s kartami na svetu. Pravila igre so se skozi čas zelo spreminjala, eden izmed razlogov zato pa je prav gotovo strategija štetja kart in njen razvoj. V diplomskem delu smo tako preverili različno literaturo o igri blackjack in vplivu različnih pravil na samo igro. Raziskali smo različne strategije štetja kart in njihov razvoj. Zaradi hitrega razvoja tehnologije in mobilnih aplikacij je postalo štetje kart dostopno in mnogo lažje za povprečnega igralca. Preverili smo, kako so se igralnice soočile s tem izzivom, saj so vstopali številni igralci, ki so bili opremljenih z znanjem štetja kart. Z uporabo zahtevnejših aplikacij kot je CVCX smo tudi matematično preverili, kako štetje kart, natančneje strategija Hi-Lo, ki je zelo preprosta in popularna, vpliva na igralnice ter koliko lahko igralec, ki šteje karte igralnico oškoduje. Zaradi pomanjkanja raziskav na področju prepoznave igralcev, ki štejejo karte, smo se odločili, da z uporabo metod strojnega učenja – natančneje odločitvenega drevesa, poskušamo identificirati igralce, ki štejejo karte. Zato smo v diplomskem delu natančneje raziskali strojno učenje, algoritme in metode, ki se pri strojnem učenju uporabljajo ter jih uspešno uporabili pri igri blackjack. Odgovorili smo na raziskovalno vprašanje, ali lahko z metodami strojnega učenja prepoznamo igralce, ki štejejo karte. Rezultati so nam pokazali, da jih lahko uspešno prepoznamo. Uspešnost je bila v primeru, ko gledamo samo igralca, ki šteje karte, več kot 80 %. Vendar smo se pri rezultatih soočili z omejitvami, saj smo veliko število osnovnih igralcev napačno klasificirali kot igralca, ki šteje karte. To nas je pripeljalo do zaključkov, da program še ni popoln in je mogočih še veliko nadgradenj saj ne želimo osnovnih igralcev, ki so igralnicam glavni vir prihodka, odsloviti iz igralnice.
Keywords: diplomske naloge, blackjack, štetje kart, strojno učenje, odločitvena drevesa, prepoznava
Published: 09.08.2021; Views: 187; Downloads: 61
.pdf Full text (1,52 MB)
This document has many files! More...

Search done in 0.2 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica