1. High strain rate hardening of metallic cellular metamaterialsNejc Novak, Matej Vesenjak, Zoran Ren, 2024, original scientific article Abstract: Strain rate hardening caused by the changed deformation mode is a fascinating phenomenon in cellular metamaterials where the material’s stiffness and energy absorption capabilities increase as the strain rate increases. This unique behaviour is attributed to a combination of micro-inertia effects, base material’s strain rate hardening and inertia effects. At high strain rates, the metamaterial’s inertia influences its deformation response, which changes to shock mode. This work briefly presents the geometry and fabrication of different metallic metamaterials. Then, it evaluates their mechanical response at different strain rates, ranging from quasi-static to intermediate dynamic and shock, determined by experimental and computational investigation. The three deformation modes can be separated into two critical loading velocities, unique for each metamaterial, which are also presented and compared in this work for various metamaterials. The investigations show that the deformation mode change in metallic metamaterials depends on their porosity. The critical velocities separating the deformation modes decrease with increasing porosity, i.e., decreased density of the metamaterial results in reduced critical loading velocities. The shock deformation mode in cellular metamaterials is thus attainable at much lower loading velocities than in homogeneous (nonporous) materials. Keywords: metamaterials, cellular structures, high strain rate, experimental testing, computational modelling, compression loading, mechanical properties Published in DKUM: 22.05.2024; Views: 204; Downloads: 25
Full text (3,42 MB) This document has many files! More... |
2. Mechanical behaviour of photopolymer cell-size graded triply periodic minimal surface structures at different deformation ratesYunus Emre Yilmaz, Nejc Novak, Oraib Al-Ketan, Hacer Irem Erten, Ulas Yaman, Anja Mauko, Matej Borovinšek, Miran Ulbin, Matej Vesenjak, Zoran Ren, 2024, original scientific article Abstract: This study investigates how varying cell size affects the mechanical behaviour of photopolymer Triply Periodic Minimal Surfaces (TPMS) under different deformation rates. Diamond, Gyroid, and Primitive TPMS structures with spatially graded cell sizes were tested. Quasi-static experiments measured boundary forces, representing material behaviour, inertia, and deformation mechanisms. Separate studies explored the base material’s behaviour and its response to strain rate, revealing a strength increase with rising strain rate. Ten compression tests identified a critical strain rate of 0.7 s−1 for “Grey Pro” material, indicating a shift in failure susceptibility. X-ray tomography, camera recording, and image correlation techniques observed cell connectivity and non-uniform deformation in TPMS structures. Regions exceeding the critical rate fractured earlier. In Primitive structures, stiffness differences caused collapse after densification of smaller cells at lower rates. The study found increasing collapse initiation stress, plateau stress, densification strain, and specific energy absorption with higher deformation rates below the critical rate for all TPMS structures. However, cell-size graded Primitive structures showed a significant reduction in plateau and specific energy absorption at a 500 mm/min rate. Keywords: cellular materials, triply periodical minimal surface, photopolymer, mechanical properties, strain rate, experimental compressive testing, computer simulations Published in DKUM: 22.05.2024; Views: 216; Downloads: 29
Full text (9,33 MB) This document has many files! More... |
3. High strain-rate deformation analysis of open-cell aluminium foamAnja Mauko, Mustafa Sarıkaya, Mustafa Güden, Isabel Duarte, Matej Borovinšek, Matej Vesenjak, Zoran Ren, 2023, original scientific article Abstract: This study investigated the high-strain rate mechanical properties of open-cell aluminium foam M-pore®. While previous research has examined the response of this type of foam under quasi-static and transitional dynamic loading conditions, there is a lack of knowledge about its behaviour under higher strain rates (transitional and shock loading regimes). To address this gap in understanding, cylindrical open-cell foam specimens were tested using a modified Direct Impact Hopkinson Bar (DIHB) apparatus over a wide range of strain rates, up to 93 m/s. The results showed a strong dependency of the foam's behaviour on the loading rate, with increased plateau stress and changes in deformation front formation and propagation at higher strain rates. The internal structure of the specimens was examined using X-ray micro-computed tomography (mCT). The mCT images were used to build simplified 3D numerical models of analysed aluminium foam specimens that were used in computational simulations of their behaviour under all experimentally tested loading regimes using LS-DYNA software. The overall agreement between the experimental and computational results was good enough to validate the built numerical models capable of correctly simulating the mechanical response of analysed aluminium foam at different loading rates. Keywords: Open-cell aluminium foam, Micro-computed tomography, High-strain rate, Direct impact hopkinson bar, Digital image correlation, Computer simulation Published in DKUM: 06.12.2023; Views: 428; Downloads: 44
Full text (3,28 MB) This document has many files! More... |
4. Influence of the virtual strain rate of noncohesive granular media on the discrete element methodKiichi Suzuki, 2015, original scientific article Abstract: The discrete element method (DEM) is an alternative computational tool for augmenting laboratory experiments because of its advantages in detailing macro- and micro-mechanical information. However, it should be noted that the DEM does not usually consider the convergence for each time step, because of the necessity for a huge calculation time. In that case, it indicates that the uniqueness of the solution is not guaranteed, except in the case of a very small strain rate, even though the behavior looks qualitatively reasonable. At first, the influence of strain rate among numerically imaginary input parameters for a non-cohesive material was investigated for monotonic, biaxial shear tests. Then, new findings were obtained from the DEM simulations. Strain rate has a significant influence on the shear behavior, especially after the peak strength of dense specimens. A quasi-static steady state exists, not a static steady state. The “strong” fabric ratio is closely related to the stress ratio. The maximum slip coordination number occurs around the phase-transformation ratio and the shear band appears around the peak strength. Keywords: discrete element method, DEM, induced anisotropy, quasi-static steady state, strain rate, uniqueness Published in DKUM: 14.06.2018; Views: 1144; Downloads: 229
Full text (690,97 KB) This document has many files! More... |
5. Experimental research on variation of pore water pressure in constant rate of strain consolidation testHojjat Ahmadi, Hassan Rahimi, Abbas Soroush, Claes Alén, 2014, original scientific article Abstract: Constant rate of strain (CRS) consolidation is a rapid test method which is used for determination of compressibility of clayey soils. In a CRS test, the appropriate strain rate is selected based on pore water pressure ratio, i.e. the ratio of pore pressure to total stress. In the present study, to investigate the effect of strain rate on variation of pore water pressure ratio, four different clay samples of different plasticity were tested by CRS apparatus. The results of the experiments showed that the trend of variation of pore water pressure is dependent on the drained water flow regime which may be either Darcy or non-Darcy. The results also indicated that the plasticity of clay does not have considerable effect on variation of pore water pressure. Keywords: constant rate of strain, consolidation, pore water pressure ratio, soil plasticity, Darcy and non-Darcy flow Published in DKUM: 14.06.2018; Views: 1052; Downloads: 94
Full text (576,58 KB) This document has many files! More... |
6. Analysis of a strain rate field in cold formed material using the visioplasticity methodLeo Gusel, Rebeka Rudolf, Borut Kosec, 2009, other scientific articles Abstract: In this paper the visioplasticity method is used to find the complete velocity and strain rate distributions from the experimental data, using the finite-difference method. The data about values of strain rates in plastic re- gion of the material is very important for calculating stresses and the prediction of product quality. Specimens of copper alloy were extruded with different lubricants and different coefficients of friction and then the strain rate distributions were analysed and compared. Significant differences in velocity and strain rate distributions were obtained in some regions at the exit of the deformed zone. Keywords: forward extrusion, copper alloy, visioplasticity, strain rate, lubrication Published in DKUM: 03.07.2017; Views: 966; Downloads: 145
Full text (733,12 KB) This document has many files! More... |
7. Dynamic property of aluminium foamSeiichi Irie, Toshihiko Okano, Shigeru Tanaka, Matej Vesenjak, Zoran Ren, Kazuyuki Hokamoto, Shigeru Itoh, 2010, published scientific conference contribution abstract Keywords: aluminium foam, powder gun, high strain rate Published in DKUM: 10.07.2015; Views: 1739; Downloads: 50
Link to full text |