| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Klasifikacija glasbenega žanra glede na spektrogram zvočnega posnetka : diplomsko delo
Tadej Lahovnik, 2022, undergraduate thesis

Abstract: V diplomskem delu smo se poglobili v izdelavo različnih tipov spektrogramov in klasifikacijo slik z uporabo konvolucijskih nevronskih mrež. Zanimalo nas je, ali je možno zanesljivo napovedati žanr zvočnega posnetka glede na spektrogram, ki mu pripada. Tekom razvoja smo ustvarili tri različne tipe spektrogramov. Za vsak tip smo ustvarili ločen klasifikacijski model, nato pa smo iz vseh treh modelov sestavili klasifikacijski ansambel. Tako smo dobili najbolj zanesljive rezultate. Klasifikacijo smo nato ovrednotili s številnimi metrikami, kjer nas je najbolj zanimala sama točnost klasifikacije. Iz matrike zmede smo izčrpali najpogostejše napake pri klasifikaciji.
Keywords: klasifikacija, spektrogram, strojno učenje, nevronske mreže, glasbeni žanr
Published in DKUM: 20.10.2022; Views: 3264; Downloads: 77
.pdf Full text (1,50 MB)

2.
Konvolucijske nevronske mreže za odkrivanje napak s pomočjo zvoka : magistrsko delo
Gorazd Fažmon, 2020, master's thesis

Abstract: V magistrskem delu je predstavljen razvoj sistema za zaznavanje napak v industrijskih procesih, ki temelji na osnovi zaznave zvoka. S pomočjo programskega orodja Audacity, so zajeti zvočni signali proizvodnih postopkov. S programskim orodjem Python je izdelan program za pretvorbo zvočnega signala v sliko. Z uporabo Python knjižnice TensorFlow je program naučen, da prepozna napako. Podan je podroben opis pomembnih pojmov, algoritmov, metod in testiranj sistema. Glavni cilj naloge je implementirati zgrajen sistem na dejanskem proizvodnem postopku.
Keywords: konvolucijska nevronska mreža, kakovost zvoka, spektrogram, Mel frekvenčni kepstralni koeficienti (MFCC), TensorFlow
Published in DKUM: 04.11.2020; Views: 1154; Downloads: 167
.pdf Full text (1,97 MB)

Search done in 0.02 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica