| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Edge-connectivity of strong products of graphs
Boštjan Brešar, Simon Špacapan, 2007, original scientific article

Abstract: The strong product ▫$G_1 \boxtimes G_2$▫ of graphs ▫$G_1$▫ and ▫$G_2$▫ is the graph with ▫$V(G_1) \times V(G_2)$▫ as the vertex set, and two distinct vertices ▫$(x_1,x_2)$▫ and ▫$(y_1,y_2)$▫ are adjacent whenever for each ▫$i\in \{1,2\}$▫ either ▫$x_i=y_i$▫ or ▫$x_iy_i \in E(G_i)$▫. In this note we show that for two connected graphs ▫$G_1$▫ and ▫$G_2$▫ the edge-connectivity ▫$\lambda(G_1 \boxtimes G_2)$▫ equals ▫$\min\{\delta(G_1\boxtimes G_2), \lambda(G_1)(|V(G_2)|+2|E(G_2)|), \lambda(G_2)(|V(G_1)|+2|E(G_1)|)\}$▫. In addition, we fully describe the structure of possible minimum edge cut sets in strong products of graphs.
Keywords: mathematics, graph theory, connectivity, strong product, graph product, separating set
Published in DKUM: 31.03.2017; Views: 1447; Downloads: 375
.pdf Full text (173,26 KB)
This document has many files! More...

2.
Maps preserving zero products
J. Alaminos, Matej Brešar, J. Extremera, A. R. Villena, 2009, original scientific article

Abstract: Linearna preslikava ▫$T$▫ iz Banachove algebre ▫$A$▫ v Banachovo algebro ▫$B$▫ ohranja ničelni produkt, če je ▫$T(a)T(b) = 0$▫, kadarkoli je ▫$ab = 0$▫. Glavna tema članka je vprašanje, kdaj je zvezna linearna surjektivna preslikava ▫$T: A to B$▫, ki ohranja ničelni produkt, uteženi homomorfizem. Dokažemo, da to velja za velik razred algeber, ki vključuje grupne algebre. Naša metoda sloni na obravnavi bilinearnih preslikav ▫$phi : A times A to X$▫ (kjer je ▫$X$▫ Banachov prostor) z lastnostjo, da iz ▫$ab=0$▫ sledi ▫$phi(a,b) = 0$▫. Dokažemo, da taka preslikava zadošča ▫$phi(amu, b) = phi(a,mu b)$▫ za vse ▫$a,b in A$▫ in vse ▫$mu$▫ iz zaprtja glede na krepko operatorsko topologijo podalgebre multiplikacijske algebre ▫${mathcal M}(A)$▫ generirane z dvostranko potenčno omejenimi elementi. Ta metoda je uporabna tudi za karakterizacijo odvajanj s pomočjo ničelnega produkta.
Keywords: matematika, teorija operatorjev, grupna algebra, ▫$C^ast$▫-algebra, homomorfizem, uteženi homomorfizem, odvajanje, posplošeno odvajanje, mathematics, operator theory, group algebra, ▫$C^ast$▫-algebra, homomorphism, weighted homomorphism, derivation, generalized derivation, separating map, disjointness preserving map, zero product preserving map, doubly power-bounded element
Published in DKUM: 10.07.2015; Views: 1301; Downloads: 101
URL Link to full text

3.
On edge connectivity of direct products of graphs
Xiang-Lan Cao, Špela Brglez, Simon Špacapan, Elkin Vumar, 2011, original scientific article

Abstract: Let ▫$lambda(G)$▫ be the edge connectivity of ▫$G$▫. The direct product of graphs ▫$G$▫ and ▫$H$▫ is the graph with vertex set ▫$V(G times H) = V(G) times V(H)$▫, where two vertices ▫$(u_1,v_1)$▫ and ▫$(u_2,v_2)$▫ are adjacent in ▫$G times H$▫ if ▫$u_1u_2 in E(G)$▫ and ▫$v_1v_2 in E(H)$▫. We prove that ▫$lambda(G times K_n) = min{n(n-1)lambda(G), (n-1)delta(G)}$▫ for every nontrivial graph ▫$G$▫ and ▫$n geqslant 3$▫. We also prove that for almost every pair of graphs ▫$G$▫ and ▫$H$▫ with ▫$n$▫ vertices and edge probability ▫$p$▫, ▫$G times H$▫ is ▫$k$▫-connected, where ▫$k=O((n/log n)^2)$▫.
Keywords: mathematics, graph theory, combinatorial problems, connectivity, direct product, graph product, separating set
Published in DKUM: 01.06.2012; Views: 2320; Downloads: 224
URL Link to full text

Search done in 0.03 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica