| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 14
First pagePrevious page12Next pageLast page
1.
On functional equations related to derivations in semiprime rings and standard operator algebras
Nejc Širovnik, 2012, original scientific article

Abstract: In this paper functional equations related to derivations on semiprime rings and standard operator algebras are investigated. We prove, for example, the following result, which is related to a classical result of Chernoff. Let ▫$X$▫ be a real or complex Banach space, let ▫$L(X)$▫ be the algebra of all bounded linear operators of ▫$X$▫ into itself and let ▫$A(X) subset L(X)$▫ be a standard operator algebra. Suppose there exist linear mappings ▫$D,G colon A(X) to L(X)$▫ satisfying the relations ▫$D(A^3)=D(A^2)A + A^2G(A)$▫, ▫$G(A^3) = G(A^2)A + A^2D(A)$▫ for all ▫$A in A(X)$▫. In this case there exists ▫$B in L(X)$▫ such that ▫$D(A) = G(A) = [A,B]$▫ holds for all ▫$A in A(X)$▫.
Keywords: matematika, algebra, prakolobar, polprakolobar, Banachov prostor, standardna operatorska algebra, odvajanje, jordansko odvajanje, jordansko trojno odvajanje, mathematics, algebra, prime ring, semiprime ring, Banach space, standard operator algebra, derivation, Jordan derivation, Jordan triple derivation
Published in DKUM: 10.07.2015; Views: 1479; Downloads: 68
URL Link to full text

2.
On some functional equations arising from (m, n)-Jordan derivations and commutativity of prime rings
Maja Fošner, Joso Vukman, 2012, original scientific article

Abstract: The purpose of this paper is to prove the following result. Let ▫$m, n ge 1$▫ be some fixed integers with ▫$m ne n$▫, and let ▫$R$▫ be a prime ring with ▫$(m+n)^2 < text{char} (R)$▫. Suppose a nonzero additive mapping ▫$D : R to R$▫ exists satisfying the relation ▫$(m+n)^2 D(x^3) = m(3m+n) D(x)x^2 + 4mnxD(x)x + n(3n+m)x^2 D(x)$▫ for all ▫$x in R$▫. In this case ▫$D$▫ is a derivation and ▫$R$▫ is commutative.
Keywords: matematika, prakolobar, polprakolobar, odvajanje, jordansko odvajanje, levo odvajanje, mathematics, prime ring, semiprime ring, derivation, Jordan derivation, left dderivation, left Jordan derivation, (m, n)-Jordan drivation
Published in DKUM: 10.07.2015; Views: 1292; Downloads: 88
URL Link to full text

3.
On certain functional equation arising from (m, n)-Jordan centralizers in prime rings
Nina Peršin, Joso Vukman, 2012, original scientific article

Abstract: The purpose of this paper is to prove the following result. Let ▫$m ge 1$▫, ▫$n ge 1$▫ be some fixed integers and let ▫$R$▫ be a prime ring with ▫$text{char}(R)= 0$▫ or ▫$(m+n)^2 < text{char}(R)$▫. Suppose there exists an additive mapping ▫$T colon R to R$▫ satisfying the relation ▫$2(m+n)^2T(x^3) = m(2m+n)T(x)x^2 + 2mnxT(x)x + n(2n+m)x^2T(x)$▫ for all ▫$x in R$▫. In this case ▫$T$▫ is a two-sided centralizer.
Keywords: matematika, algebra, kolobar, prakolobar, polprakolobar, Banachov prostor, Hilbertov prostor, algebra vseh omejenih linearnih operatorjev, standardna operatorska algebra, odvajanje, jordansko odvajanje, centralizator, algebra, ring, prime ring, semiprime ring, Banach space, Hilbert space, algebra of all bounded linear operators, standard operator algebra, derivation, Jordan derivation, left (right) centralizer, two-sided centralizer, left (right) Jordan centralizer, (m, n)-Jordan centralizer
Published in DKUM: 10.07.2015; Views: 1422; Downloads: 140
URL Link to full text

4.
Identities with generalized derivations in prime rings
Maja Fošner, Joso Vukman, 2012, original scientific article

Abstract: In this paper we investigate identities with two generalized derivations in prime rings. We prove, for example, the following result. Let ▫$R$▫ be a prime ring of characteristic different from two and let ▫$F_1, F_2 colon R to R$▫ be generalized derivations satisfying the relation ▫$F_1(x)F_2(x) + F_2(x)F_1(x) = 0$▫ for all ▫$x in R$▫. In this case either ▫$F_1 = 0$▫ or ▫$F_2 = 0$▫.
Keywords: matematika, prakolobar, polprakolobar, odvajanje, posplošeno odvajanje, mathematics, prime ring, semiprime ring, derivation, generalized derivation
Published in DKUM: 10.07.2015; Views: 1212; Downloads: 100
URL Link to full text

5.
Some remarks on derivations in semiprime rings and standard operator algebras
Joso Vukman, 2011, original scientific article

Abstract: Identities related to derivations on semiprime rings and standard operator algebras are investigated. We prove the following result which generalizes a classical result of Chernoff. Let ▫$X$▫ be a real or complex Banach space, let ▫$L(X)$▫ be the algebra of all bounded linear operators of ▫$X$▫ into itself and let ▫$A(X) subseteq L(X)$▫ be a standard operator algebra. Suppose there exists a linear mapping ▫$D:A(X) to L(X)$▫ satisfying the relation ▫$2D(A^{3}) = D(A^2)A + A^2D(A) + D(A)A^2 + AD(A^2)$▫ for all ▫$A in A(X)$▫. In this case ▫$D$▫ is of the form ▫$D(A) = AB-BA$▫ for all ▫$A in A(X)$▫ and some fixed ▫$B in L(X)$▫, which means that ▫$D$▫ is a linear derivation.
Keywords: matematika, algebra, prakolobar, polprakolobar, Banachov prostor, standardna operatorska algebra, odvajanje, jordansko odvajanje, jordansko trojno odvajanje, mathematics, algebra, prime ring, semiprime ring, Banach space, standard operator algebra, derivation, Jordan derivation, Jordan triple derivation
Published in DKUM: 10.07.2015; Views: 1598; Downloads: 131
URL Link to full text

6.
On (anti-)multiplicative generalized derivations
Daniel Eremita, Dijana Ilišević, 2012, original scientific article

Abstract: Naj bo ▫$R$▫ polprakolobar in naj bosta ▫$F, f colon R to R$▫ taki (ne nujno aditivni) preslikavi, da je ▫$F(xy) = F(x)y + xf(y)$▫ za vse ▫$x,y in R$▫. Denimo, da obstajata taki celi števili ▫$m$▫ in ▫$n$▫, da velja ▫$F(uv) = mF(u)F(v) + nF(v)F(u)$▫ za vse elemente ▫$u$▫, ▫$v$▫ neničelnega ideala ▫$I$▫ kolobarja ▫$R$▫. Ob določenih blagih predpostavkah za polprakolobar ▫$R$▫ dokažemo, da obstaja tak ▫$c in C(I^{botbot})$▫, da je ▫$c = (m+n)c^2$▫, ▫$nc[I^{botbot}, I^{botbot}] = 0$▫ in ▫$F(x) = cx$▫ za vse ▫$x in I^{botbot}$▫. Glavni rezultat je nato uporabljen v primeru, ko je preslikava ▫$F$▫ multiplikativna ali antimultiplikativna na idealu ▫$I$▫.
Keywords: matematika, algebra, aditivnost, kolobar, prakolobar, polprakolobar, odvajanje, posplošeno odvajanje, homomorfizem, antihomomorfizem, algebra, additivity, ring, prime ring, semiprime ring, derivation, generalized derivation, homomorphism, anti-homomorphism
Published in DKUM: 10.07.2015; Views: 2042; Downloads: 142
URL Link to full text

7.
On some equations in prime rings
Maja Fošner, Joso Vukman, 2007, original scientific article

Abstract: The main purpose of this paper is to prove the following result. Let ▫$R$▫ be a prime ring of characteristic different from two and let ▫$T : R to R$▫ be an additive mapping satisfying the relation ▫$T(x^3) = T(x)x^{2} - xT(x)x + x^{2} T(x)$▫ for all ▫$x in R$▫. In this case ▫$T$▫ is of the form ▫$4T(x) = qx + xq$▫, where ▫$q$▫ is some fixed element from the symmetric Martindale ring of quotients. This result makes it possible to solve some functional equations in prime rings with involution which are related to bicircular projections.
Keywords: matematika, algebra, prakolobar, polprakolobar, funkcijska identiteta, odvajanje, jordansko odvajanje, involucija, bicirkularni projektor, mathematics, algebra, prime ring, semiprime ring, functional identity, derivation, Jordan derivation, involution, bicircular projection
Published in DKUM: 10.07.2015; Views: 1398; Downloads: 85
URL Link to full text

8.
Some functional equations on standard operator algebras
Ajda Fošner, Joso Vukman, 2008, original scientific article

Abstract: Naj bo ▫$H$▫ kompleksni Hilbertov prostor, ▫$mathcal{B}(H)$▫ algebra vseh omejenih linearnih operatorjev na ▫$H$▫ ter ▫$mathcal{A}(H)$▫ standardna operatorska algebra, zaprta za adjungiranje. Če je ▫$T: mathcal{A}(H) to mathcal{B}(H)$▫ linearna preslikava, ki zadošča identiteti ▫$T(AA^ast A) = T(A)A^ast A - AT(A^ast)A + AA^ast T(A)$▫ za vsak ▫$A$▫ iz ▫$mathcal{A}(H)$▫, potem je ▫$T(A) = AB + BA$▫ za vsak ▫$A$▫ iz A(H), kjer je ▫$B$▫ operator iz ▫$mathcal{B}(H)$▫.
Keywords: matematika, algebra, kolobar, prakolobar, polprakolobar, Banachov prostor, Hilbertov prostor, standardna operatorska algebra, odvajanje, jordansko odvajanje, bicirkularni projektor, mathematics, algebra, ring, ▫$^ast$▫-ring, prime ring, semiprime ring, Banach space, Hilbert space, standard operator algebra, derivation, Jordan derivation, bicircular projection
Published in DKUM: 10.07.2015; Views: 1406; Downloads: 98
URL Link to full text

9.
Symmetric bi-derivations on prime and semi-prime rings
Joso Vukman, 1989, original scientific article

Abstract: Naj bo ▫$K$▫ kolobar. Biaditivna simetrična preslikava ▫$D(.,.):K times K to K$▫ je simetrična biderivacija, če je za vsak fiksen ▫$y in K$▫ preslikava ▫$x mapsto D(x,y)$▫ derivacija. Glavni namen članka je dokazati rezultat v smislu klasičnega izreka E. Posnerja, ki pravi naslednje: Če je ▫$K$▫ prakolobar s karakteristiko različno od dva in sta ▫$D_1$▫ in ▫$D_2$▫ od nič različni derivaciji, potem preslikava ▫$x mapsto D_1(D_2(x))$▫ ne more biti derivacija.
Keywords: matematika, asociativni kolobarji in algebre, kolobar, prakolobar, polprakolobar, derivacija, simetrična biderivacija, mathematics, associative rings and algebras, prime ring, semiprime ring, derivation, simetric biderivation, semiprime ring, Banach algebra
Published in DKUM: 10.07.2015; Views: 1326; Downloads: 98
URL Link to full text

10.
A result concerning derivations in prime rings
Maja Fošner, Nina Peršin, 2013, original scientific article

Abstract: A classical result of Herstein asserts that any Jordan derivation on a prime ring of characteristic different from two is a derivation. It is our aim in this paper to prove the following result, which is in the spirit of Herstein's theorem. Let ▫$R$▫ be a prime ring with ▫$text{char}(R) = 0$▫ or ▫$4 < text{char}(R)$▫, and let ▫$D colon R to R$▫ be an additive mapping satisfying either the relation ▫$D(x^3) = D(x^2)x + x^2D(x)$▫ or the relation ▫$D(x^3) = D(x)x^2 + xD(x^2)$▫ for all ▫$x in R$▫. In both cases ▫$D$▫ is a derivation.
Keywords: prakolobar, polprakolobar, odvajanje, jordansko odvajanje, jordansko trojno odvajanje, funkcijska identiteta, prime ring, semiprime ring, derivation, Jordan derivation, Jordan triple derivation, functional identity
Published in DKUM: 10.07.2015; Views: 1850; Downloads: 86
URL Link to full text

Search done in 0.21 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica