| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 1 / 1
First pagePrevious page1Next pageLast page
1.
A VAN-Based Multi-Scale Cross-Attention Mechanism for Skin Lesion Segmentation Network
Shuang Liu, Zeng Zhuang, Yanfeng Zheng, Simon Kolmanič, 2023, original scientific article

Abstract: With the rise of deep learning technology, the field of medical image segmentation has undergone rapid development. In recent years, convolutional neural networks (CNNs) have brought many achievements and become the consensus in medical image segmentation tasks. Although many neural networks based on U-shaped structures and methods, such as skip connections have achieved excellent results in medical image segmentation tasks, the properties of convolutional operations limit their ability to effectively learn local and global features. To address this problem, the Transformer from the field of natural language processing (NLP) was introduced to the image segmentation field. Various Transformer-based networks have shown significant performance advantages over mainstream neural networks in different visual tasks, demonstrating the huge potential of Transformers in the field of image segmentation. However, Transformers were originally designed for NLP and ignore the multidimensional nature of images. In the process of operation, they may destroy the 2D structure of the image and cannot effectively capture low-level features. Therefore, we propose a new multi-scale cross-attention method called M-VAN Unet, which is designed based on the Visual Attention Network (VAN) and can effectively learn local and global features. We propose two attention mechanisms, namely MSC-Attention and LKA-Cross-Attention, for capturing low-level features and promoting global information interaction. MSC-Attention is designed for multi-scale channel attention, while LKA-Cross-Attention is a cross-attention mechanism based on the large kernel attention (LKA). Extensive experiments show that our method outperforms current mainstream methods in evaluation metrics such as Dice coefficient and Hausdorff 95 coefficient.
Keywords: CNNs, deep learning, medical image processing, NLP, semantic segmentation
Published in DKUM: 14.03.2024; Views: 496; Downloads: 311
.pdf Full text (1,46 MB)
This document has many files! More...

Search done in 0.04 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica