| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Antlion larvae localize long distant preys by a mechanism based on time diference
Vanessa Martinez, David Sillam-Dussès, Dušan Devetak, Vincent Lorent, Jan Podlesnik, 2024, original scientific article

Abstract: Pit building antlions Euroleon nostras have been submitted to artifcial cues in order to delineate their faculty to localize a prey. Series of propagating pulses in sand have been created from an extended source made of 10 piezoelectric transducers equally spaced on a line and located at a large distance from the pit. The envelope of each pulse encompasses six oscillations at a carrier frequency of 1250 Hz and up to eight oscillations at 1666 Hz. In one set of experiments, the frst wave front is followed by similar wave fronts and the antlions respond to the cue by throwing sand in the opposite direction of the wave front propagation direction. In another set of experiments, the frst wave front is randomly spatially structured while the propagation of the wave fronts inside the envelope of the pulse are not. In that case, the antlions respond less to the cue by throwing sand, and when they do, their sand throwing is more randomly distributed in direction. The fnding shows that the localization of vibration signal by antlions are based on the equivalent for hearing animals of interaural time diference in which the onset has more signifcance than the interaural phase diference.
Keywords: Euroleon nostras, localization, phase time diference, onset time diference, sand-borne vibrations
Published in DKUM: 18.04.2024; Views: 151; Downloads: 13
.pdf Full text (1,80 MB)
This document has many files! More...

2.
Sand as a medium for transmission of vibratory signals of prey in antlions Euroleon nostras (Neuroptera: Myrmeleontidae)
Dušan Devetak, Bojana Mencinger Vračko, Miha Devetak, Marko Marhl, Andreja Špernjak, 2007, original scientific article

Abstract: European pit-building antlions (Euroleon nostras/ Geoffroy in Fourcroy/) detect their prey by sensing the vibrations that prey generate during locomotory activity. The behavioural reactions and some of the physical properties of substrate vibrations in sand are measured to observe signal transmission through the substrate. The frequency range of the signals of four arthropod species (Tenebrio molitor, Pyrrhocoris apterus, Formica sp. and Trachelipus rathkei) is 0.1-4.5 kHz and acceleration values are in the range ▫$400 {mu}m s^{-2} to 1.5 mm s^{-2}$▫. Substrate particle size and the frequency of prey signals both influence the propagation properties of vibratory signals. The damping coefficient at a frequency 300 Hz varies from 0.26 to 2.61 dB ▫$cm^{-1}$▫ and is inversely proportional to the size of the sand particle. The damping coefficient is positively correlated with the frequency of the pulses. Vibrations in finer sand are attenuated more strongly than in coarser sand and, consequently, an antlion detects its prey only at a short distance. The reaction distance is defined as the distance of the prey from the centre of the pit when the antlion begins tossing sand as a reaction to the presence of prey. The mean reaction distance is 3.3 cm in the finest sand (particle size ▫$le 0.23 mm$▫) and 12.3 cm in coarser sand (particle size 1-1.54 mm). The most convenient sands for prey detection are considered to be medium particle-sized sands.
Keywords: biology, zoology, receptors, chordotonal organs, vibrations, vibratory signals, transmission of vibrations, reception of vibrations, electrophysiology, substrate vibration, antlions, Myrmeleontidae, sand, substrate vibration, particle size
Published in DKUM: 07.06.2012; Views: 2662; Downloads: 110
URL Link to full text

Search done in 0.06 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica