| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 10 / 13
First pagePrevious page12Next pageLast page
Additive fabrication in metallurgy - case study of grey cast iron valve production
Bogdan Valentan, Igor Drstvenšek, Tomaž Brajlih, Peter Sever, Simon Brezovnik, Jože Balič, 2010, professional article

Abstract: Additive Fabrication technologies are well known from the last two decades. In that time Additive Fabrication technologies have evolved from strictly prototype part production into an option that can also be used to produce end-user parts. With development of Additive Fabrication machines capable of producing metal parts, a complete substitution of conventional metal casting technologies is possible. However, direct Additive Fabrication of metal parts is still not time/cost effective when producing large volume parts, and nowadays there is still lack of materials that can be used on those machines. This paper presents a method how a conventional sand casting process can be assisted by Additive Fabrication technologies. A sand mould pattern is produced by Selective Laser Sintering. Additive Fabrication is also used in direct manufacturing of cores.
Keywords: gray cast iron, layered technologies, rapid prototyping, rapid manufacturing, sand casting
Published: 31.05.2012; Views: 1329; Downloads: 11
URL Link to full text

Sand as a medium for transmission of vibratory signals of prey in antlions Euroleon nostras (Neuroptera: Myrmeleontidae)
Dušan Devetak, Bojana Mencinger Vračko, Miha Devetak, Marko Marhl, Andreja Špernjak, 2007, original scientific article

Abstract: European pit-building antlions (Euroleon nostras/ Geoffroy in Fourcroy/) detect their prey by sensing the vibrations that prey generate during locomotory activity. The behavioural reactions and some of the physical properties of substrate vibrations in sand are measured to observe signal transmission through the substrate. The frequency range of the signals of four arthropod species (Tenebrio molitor, Pyrrhocoris apterus, Formica sp. and Trachelipus rathkei) is 0.1-4.5 kHz and acceleration values are in the range ▫$400 {mu}m s^{-2} to 1.5 mm s^{-2}$▫. Substrate particle size and the frequency of prey signals both influence the propagation properties of vibratory signals. The damping coefficient at a frequency 300 Hz varies from 0.26 to 2.61 dB ▫$cm^{-1}$▫ and is inversely proportional to the size of the sand particle. The damping coefficient is positively correlated with the frequency of the pulses. Vibrations in finer sand are attenuated more strongly than in coarser sand and, consequently, an antlion detects its prey only at a short distance. The reaction distance is defined as the distance of the prey from the centre of the pit when the antlion begins tossing sand as a reaction to the presence of prey. The mean reaction distance is 3.3 cm in the finest sand (particle size ▫$le 0.23 mm$▫) and 12.3 cm in coarser sand (particle size 1-1.54 mm). The most convenient sands for prey detection are considered to be medium particle-sized sands.
Keywords: biology, zoology, receptors, chordotonal organs, vibrations, vibratory signals, transmission of vibrations, reception of vibrations, electrophysiology, substrate vibration, antlions, Myrmeleontidae, sand, substrate vibration, particle size
Published: 07.06.2012; Views: 1352; Downloads: 65
URL Link to full text

Measurement and interpretation of the small strain stifness of Boštanj silty sand
Gregor Vilhar, Vojkan Jovičić, 2009, original scientific article

Abstract: This paper presents measurements, and an interpretation of these measurements, based on the use of bender-element probes for Boštanj silty sand. The samples were prepared at different initial void ratios and isotropically compressed up to 5 MPa. The bender-element technique was used to determine the dynamic shear modulus ($G_0$) of the soils at very small strains. The multiple bender-element probes were shot at different excitation frequencies in order to increase the reliability of the measurements. The $G_0$ stiffness was determined by using three different techniques: a) the first-time arrival, b) the phase-change method and c) the cross-correlation method. The systematic differences observed between the $G_0$ values, calculated using the three techniques, are discussed. The variation of $G_0$ in the log$G_0$ - log$p'$ plane was evaluated for the Boštanj silty sand and compared with other sands.
Keywords: silty sand, triaxial testing, small strain stiffness, bender elements, time-domain and frequency-domain, measurements
Published: 06.06.2018; Views: 265; Downloads: 17
.pdf Full text (706,26 KB)
This document has many files! More...

Effect of the initial structure on the behaviour of Chlef sand
Noureddine Della, Ahmed Arab, Mostefa Belkhatir, Hanifi Missoum, Claude Bacconnet, Daniel Boissier, 2010, original scientific article

Abstract: It has been known for many years that initial structure, plays an important part in the results of laboratory testing of natural of silty sands. For this purpose, a series of monotonic undrained triaxial compression tests were carried out on samples composed of Chlef sand with 0.5% non-plastic silt content using two depositional methods (dry funnel pluviation and wet deposition) at different initial relative density (RD= 29%, 50% and 80%). All specimens were subjected to isotropic consolidation of 50 kPa, 100 kPa and 200 kPa. It was found that the initial structure of the soil influences considerably the undrained shear response in terms of maximal deviatoric stress, peak strength and excess pore water pressure.
Keywords: liquefaction, sand, dry funnel pluviation, wet deposition, density, deviatoric stress, pore pressure
Published: 11.06.2018; Views: 257; Downloads: 38
.pdf Full text (2,50 MB)
This document has many files! More...

Lateral resistance of a short rigid pile in a two-layer cohesionless soil
Erdal Uncuoğlu, Mustafa Laman, 2011, original scientific article

Abstract: The behavior of a laterally loaded short rigid pile founded in a two-layer sand soil profile has been investigated. For this purpose, a series of model tests were carried out on model piles. The effects of the elasticity modulus, dilatancy and interface behavior of the sand have been explored numerically by performing a series of three-dimensional non-linear finite-element analyses. The lateral load capacities in the layered sand conditions have been calculated using the methods proposed by Brinch Hansen (1961) and Meyerhof et al. (1981). The results obtained from experimental studies, numerical analyses and a conventional method were compared with each other. The results proved that the parameters investigated had a considerable effect on the behavior of short rigid piles subjected to lateral loads. It was also shown that the value of the ultimate lateral load capacity could vary significantly, depending on the methods used.
Keywords: lateral load, short pile, two-layered sand, model test, finite element, lateral effective stress
Published: 13.06.2018; Views: 218; Downloads: 33
.pdf Full text (612,49 KB)
This document has many files! More...

Yielding in the isotropic compression of Porto silty sand
Miguel Ferreira Amaral, Sara Rios, António Viana da Fonseca, 2012, original scientific article

Abstract: The yielding locus of a well-graded silty sand was analysed by means of isotropic compression tests and scanning electron microscopy (SEM). The tests were performed with precise instrumentation, for internal and external strain measurements, and shear-wave velocity measurements by means of bender elements. Finally, aiming at an accurate evaluation of the yield stress, four different methods were applied – two quite well know and the other two being innovative – leading to interesting conclusions.
Keywords: silty sand, yield point, isotropic compression, high pressure, seismic waves
Published: 13.06.2018; Views: 165; Downloads: 38
.pdf Full text (613,18 KB)
This document has many files! More...

Post-liquefaction volume change in micaceous sandy of Old Gediz River Delta
Ender Basari, Gurkan Ozden, 2013, original scientific article

Abstract: Post-liquefaction settlement characteristics of micaceous sands are not well investigated topic. Currently available charts relating post-liquefaction volumetric strain to relative density were developed for clean sand. Estimation of post-liquefaction settlement of micaceous sands, therefore, may stay on the unsafe side, since there is evidence indicating that mica grains could increase volume change tendency. Influence of mica content on post-liquefaction volumetric strain of sand-mica mixtures is studied in this article. Soil samples were prepared at various relative densities. Influence of fine content that could be present in the field was also investigated on tamped natural field samples recovered from boreholes drilled in a highly populated alluvial site known as the Old Gediz River Delta of Izmir. It was found that increasing mica content at a certain relative density resulted in higher volumetric strains as compared with the data on clean sands. It is deduced that influence of mica grains on sand behavior depends on initial void ratio of sand. Effects of mica grains decrease with increasing of relative density. Simple empirical relationships were derived relating mica content and relative density to volumetric strain. It was also noticed that fine content accelerated and increased post-liquefaction volumetric strains.
Keywords: sand, mica, non-plastic fines, post-liquefaction volume change
Published: 14.06.2018; Views: 134; Downloads: 47
.pdf Full text (434,60 KB)
This document has many files! More...

Experimental and numerical studies of T-shaped footings
Nihat Kaya, Murat Ornek, 2013, original scientific article

Abstract: In addition to vertical axial loads, the footings of structures are often subjected to eccentric loads caused by the forces of earth pressures, earthquakes, water, wind, etc. Due to eccentric loading, the two edges settle by different amounts, causing the footing to tilt and then the pressure below the footing does not remain uniform. The T-shape is proposed as a footing shape for improving the bearing capacity of shallow footings against the action of eccentric loads. The vertical insertion of the rigid T-shaped footing, into the bearing soil, provides considerable resistance, against both of sliding and overturning, enough to regain the reduction in bearing capacity and increase in settlement. In this study, a series of experimental and numerical results from the ultimate loads and settlement of T-shaped footings are reported. A total of 48 model tests were conducted for investigating the effects of different parameters, such as the problem geometry and soil density. The problem geometry was represented by two parameters, the load eccentricity (e) and the insertion depth (H) of the T-shape into the loose and dense sand soil. After the experimental stage, the numerical analyses were carried out using a plane strain, two-dimensional, finite-element-based computer program. The behaviour of the T-shape footing on sand beds is represented by the hardening soil model. The results of the experimental and numerical studies proved that the ultimate bearing capacity of a footing under eccentric loads could be improved by inserting a vertical central cut-off rigidly connected to the footing bottom. The load settlement curves indicate that the higher load eccentricity results in a decrease in the bearing capacity of the strip footing. It was also proved that the ultimate bearing capacity values can, depending on the soil density, be improved by up to four times that of the loose sand case. This investigation is considered to have provided a useful basis for further research, leading to an increased understanding of the T-shaped footing design.
Keywords: model test, finite-element method, T-shaped footing, eccentric loading, sand
Published: 14.06.2018; Views: 189; Downloads: 22
.pdf Full text (686,03 KB)
This document has many files! More...

Effects of the particle shape and size of sands on the hydraulic conductivity
Ali Firat Cabalar, Nurullah Akbulut, 2016, original scientific article

Abstract: This study aims to investigate the effects of some physical properties of sands (e.g., size and shape) on the hydraulic conductivity (k). The paper presents the results of an extensive series of experimental investigations performed using sands with different sizes and particle shapes. Three different particle size ranges (0.60- 1.18 mm, 1.18- 2.00 mm, and 0.075- 2.00 mm) of sands (i. Crushed Stone Sand, CSS; ii. Trakya Sand, TS; iii. Narli Sand, NS; iv. Fly Ash Pellets, FAP; v. Leighton Buzzard Sand, LBS) having distinct shapes, including roundness, R, and sphericity, S (Ri=0.15, Si=0.55; Rii=0.43, Sii=0.67; Riii=0.72, Siii=0.79; Riv=0.65, Siv=0.89; Rv=0.78 Sv=0.65) were tested in a constant-head permeability testing apparatus at a relative density (Dr) of about 35% and constant room temperature (20°C). The experimental results showed that the sands having different shapes (R, S) with the same size and gradation characteristics (cc , cu , D10 , D30 , D50 , D60) result in different k values. The scanning electron microscope (SEM) images indicate the physical differences/similarities among the sands used during this investigation. A comparative study of the tests results and the estimated hydraulic conductivity values using empirical equations previously developed for the hydraulic conductivity prediction of soils by certain researchers are presented.
Keywords: sand, shape, size, hydraulic conductivity
Published: 18.06.2018; Views: 193; Downloads: 25
.pdf Full text (587,55 KB)
This document has many files! More...

Determining the grain size distribution of granular soils using image analysis
Nihat Dipova, 2017, original scientific article

Abstract: Image-processing technology includes storing the images of objects in a computer and processing them with the computer for a specified purpose. Image analysis is the numerical expression of the images of objects by means of mimicking the functioning of the human visual system and the generation of numerical data for calculations that will be made later. Digital image analysis provides the capability for rapid measurement, which can be made in near-real time, for numerous engineering parameters of materials. Recently, image analysis has been used in geotechnical engineering practices. Grain size distribution and grain shape are the most fundamental properties used to interpret the origin and behaviour of soils. Mechanical sieving has some limitations, e.g., it does not measure the axial dimension of a particle, particle shape is not taken into consideration, and especially for elongated and flat particles a sieve analysis will not yield a reliable measure. In this study the grain size distribution of sands has been determined following image-analysis techniques, using simple apparatus, non-professional cameras and open-code software. The sample is put on a transparent plate that is illuminated with a white backlight. The digital images were acquired with a CCD DSLR camera. The segmentation of the particles is achieved by image thresholding, binary coding and particle labeling. The geometrical measurements of each particle are obtained using an automated pixel-counting technique. Local contacts or limited overlaps were overcome using a watershed split. The same sample was tested by traditional sieve analysis. An image-analysis-based grain size distribution has been compared with a sieve-analysis distribution. The results show that the grain size distribution of the image-based analysis and the sieve analysis are in good agreement.
Keywords: image analysis, image processing, grain size, sand
Published: 18.06.2018; Views: 235; Downloads: 41
.pdf Full text (1,27 MB)
This document has many files! More...

Search done in 0.17 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica