| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 14
First pagePrevious page12Next pageLast page
1.
2.
Advance analysis of the obtained recycled materials from used disposable surgical masks
Alen Erjavec, Julija Volmajer Valh, Silvo Hribernik, Tjaša Kraševac Glaser, Lidija Fras Zemljič, Tomaž Vuherer, Branko Neral, Mihael Brunčko, 2024, original scientific article

Abstract: The production of personal protective equipment (PPE) has increased dramatically in recent years, not only because of the pandemic, but also because of stricter legislation in the field of Employee Protection. The increasing use of PPE, including disposable surgical masks (DSMs), is putting additional pressure on waste collectors. For this reason, it is necessary to find high-quality solutions for this type of waste. Mechanical recycling is still the most common type of recycling, but the recyclates are often classified as low-grade materials. For this reason, a detailed analysis of the recyclates is necessary. These data will help us to improve the properties and find the right end application that will increase the value of the materials. This work represents an extended analysis of the recyclates obtained from DSMs, manufactured from different polymers. Using surface and morphology tests, we have gained insights into the distribution of different polymers in polymer blends and their effects on mechanical and surface properties. It was found that the addition of ear loop material to the PP melt makes the material tougher. In the polymer blends obtained, PP and PA 6 form the surface (affects surface properties), while PU and PET are distributed mainly inside the injection-molded samples.
Keywords: mechanical recycling, disposable surgical mask, morphology, surface properties, mechanical properties, nonwoven materials, PPE
Published in DKUM: 09.04.2024; Views: 232; Downloads: 15
.pdf Full text (8,08 MB)
This document has many files! More...

3.
4.
An analysis of the responsibility for zero waste
Ivana Tršelič, Daniel Rolph Schneider, Niko Samec, Filip Kokalj, 2019, original scientific article

Abstract: European Union Directive 2008/98/EC sets the priority hierarchy of the prevention of waste, re-using waste, recycling waste, waste recovery, and waste disposal. Although every one of us is in daily contact with waste, we do not have the knowledge that can lead us to the sound management of waste from the beginning, before products are identified as waste. Zero waste is a fundamental concept of the sustainable community of the future. It is a phrase frequently used by politicians seeking to upgrade the municipal solid waste management systems in their communities. In this manner, the responsibility of zero waste is given to the waste management process instead of to householders. Householders then equate waste prevention with recycling and the proper waste management of the collectors, public services, or waste management company. In reality, zero waste starts with each one of us at home. Households should aim to reduce consumption and undertake repairs to extend the life span of products. Behaviour change can only start with knowledge. In reality, waste prevention does not include recycling. Recycling leads to a combined reduction of waste brought to landfill and raw material extraction. The present paper evaluates household waste to clarify the facts. It analyses the composition of three streams: municipal solid waste, separately collected packaging waste, and bulky waste in different regions of Slovenia. The research defines waste into five different categories. The first category is waste that can and should be avoided. The second category is waste that can be re-used. Further on, the research expands by researching the market of the third category that defines recyclables, which waste can be recycled; the last two categories are the waste that we are fighting with at the end of the waste management process, either to make it to the waste-to-energy process or to comply with landfill restrictions. At the end of the research, we summarize the situation of household waste in 2018. Our goal is to reduce the quantity of waste, making only waste that can be recycled. If we consider waste prevention to be a fight against waste, we can put our plan in place by taking the first step: getting to know our enemy.
Keywords: municipal solid waste, zero waste, recycling, lightweight packaging waste, waste management, material recovery
Published in DKUM: 05.12.2023; Views: 397; Downloads: 8
.pdf Full text (463,42 KB)
This document has many files! More...

5.
Degradation of polyvinyl chloride (PVC) waste with supercritical water
Maja Čolnik, Petra Kotnik, Željko Knez, Mojca Škerget, 2022, original scientific article

Abstract: The chemical degradation of PVC waste in SCW between 400 and 425 °C and reaction times from 30 to 60 min was studied. The PVC waste in SCW decomposed into the gas, oil, water soluble, and solid phases. The highest yield of the gas and oil phases was achieved at the temperature of 425 °C after 60 min. By increasing the reaction time at 400 °C, the yield of chloride ions in the aqueous phase increased and reached the maximum at 60 min. The gas and oil phases contained many valuable compounds similar to crude oil. Alkanes and chloroalkanes; alkenes, alicyclic, and aromatic hydrocarbons; as well as alcohols were the main groups of hydrocarbons in the oil phase, while the gas phase contained only light hydrocarbons (C1–C6), CO2, and small amounts of H2. This confirmed that the largest chlorine content remains in the aqueous phase and does not pass into the gas phase. It can be concluded that SCW presents effective decomposition media for plastic waste.
Keywords: polyvinyl chloride, supercritical water, chemical recycling, plastic waste
Published in DKUM: 18.09.2023; Views: 513; Downloads: 42
.pdf Full text (1,09 MB)
This document has many files! More...

6.
Chemical recycling of polyolefins waste materials using supercritical water
Maja Čolnik, Petra Kotnik, Željko Knez, Mojca Škerget, 2022, original scientific article

Abstract: In the following work, the hydrothermal degradation of polypropylene waste (PP) using supercritical water (SCW) has been studied. The procedure was carried out in a high-pressure, high-temperature batch reactor at 425 °C and 450 °C from 15 to 240 min. The results show a high yield of the oil (up to 95%) and gas (up to 20%) phases. The gained oil phase was composed of alkanes, alkenes, cycloalkanes, aromatic hydrocarbons, and alcohols. Alkanes and alcohols predominated at 425 °C and shorter reaction times, while the content of aromatic hydrocarbons sharply increased at higher temperatures and times. The higher heating values (HHVs) of oil phases were in the range of liquid fuel (diesel, gasoline, crude and fuel oil), and they were between 48 and 42 MJ/kg. The gas phase contained light hydrocarbons (C1–C6), where propane was the most represented component. The results for PP degradation obtained in the present work were compared to the results of SCW degradation of colored PE waste, and the potential degradation mechanism of polyolefins waste in SCW is proposed. The results allowed to conclude that SCW processing technology represents a promising and eco-friendly tool for the liquefaction of polyolefin (PE and PP) waste into oil with a high conversion rate.
Keywords: polypropylene, polyolefins, supercritical water, plastics waste, chemical recycling
Published in DKUM: 18.09.2023; Views: 555; Downloads: 32
.pdf Full text (3,44 MB)
This document has many files! More...

7.
Recovery of N-butanol from a complex five-component reactive azeotropic mixture
Miloš Bogataj, Zdravko Kravanja, Andreja Nemet, 2022, original scientific article

Abstract: This paper proposes a concept of a process design for the separation and recovery of n-butanol from a five-component mixture, consisting of n-butanol, isobutanol, formaldehyde, water and methanol. The mixture is a common waste stream in the production of butylated amino resins; therefore, recovery of n-butanol is crucial to the efficiency of the process. The results show that up to 94% of the n-butanol present in the waste stream can be recovered. Under the studied conditions, 99.76% pure n-butanol can be obtained, while formaldehyde, water and methanol are present only in traces. The energy intensity of the process is estimated at 2.42 MJ/kg of purified n-butanol. The economic analysis of the process shows that the process is economically viable over a wide range of production capacities, as evidenced by high net present values and high return on investment values.
Keywords: recycling, n-butanol, azeotropic mixture, separation, process design, energy efficiency
Published in DKUM: 17.08.2023; Views: 325; Downloads: 41
.pdf Full text (4,40 MB)
This document has many files! More...

8.
Long-term creep compliance of wood polymer composites: using untreated wood fibers as a filler in recycled and neat polypropylene matrix
Marko Bek, Alexandra Aulova, Klementina Pušnik Črešnar, Sebastjan Matkovič, Mitjan Kalin, Lidija Slemenik Perše, 2022, original scientific article

Abstract: Neat (NPP) and recycled (RPP) polypropylene matrix materials were used to prepare wood–polymer composites with untreated wood fibers up to 40 wt.%. Long-term creep properties obtained through the time-temperature superposition showed superior creep resistance of composites with NPP matrix. In part, this is attributed to their higher crystallinity and better interfacial adhesion caused by the formation of a transcrystalline layer. This difference resulted in up to 25% creep compliance reduction of composites with NPP matrix compared to composites with recycled (RPP) polypropylene matrix, which does not form a transcrystalline layer between the fibers and polymer matrix. Despite the overall inferior creep performance of composites with RPP matrix, from the 20 wt.% on, the creep compliance is comparable and even surpasses the creep performance of unfilled NPP matrix and can be a promising way to promote sustainability.
Keywords: lesno-polimerni kompoziti, lezenje, vzdržljivost, les, recikliranje, wood–polymer composites, creep, durability, wood, recycling
Published in DKUM: 16.08.2023; Views: 381; Downloads: 28
URL Link to full text
This document has many files! More...

9.
Sustainable processing of materials using supercritical fluids : doktorska disertacija
Dragana Borjan, 2022, doctoral dissertation

Abstract: Supercritical fluids (SCFs) are powerful solvents with many unique properties. They have great potential for many processes, from extraction to chemical reactions and recycling. Accordingly, phase equilibrium data and thermodynamic and transport properties measurements in systems with a supercritical phase, as well as reliable and versatile mathematical models of the phase equilibrium thermodynamics, are needed for the process design and economic feasibility studies. The dissertation focuses on the benefits of supercritical fluid technology and consists of three main sections. The first section includes studies of the phase equilibria of the binary gas-alcohol and gas-urea derivatives. The influence of pressure and temperature on the system behaviour (solubility, viscosity, density, interfacial tension, melting point curve) was investigated. Most of the experiments were carried out with a high-pressure optical view cell, with minor modifications of the apparatus and measurement principle to determine mentioned thermodynamic and transport properties. The second part of the dissertation deals with the recovery of extracts from natural materials. Special interest is oriented towards supercritical fluid extracts, characterised by strong biological activities, especially antimicrobial and antioxidant properties. Supercritical fluid extraction has been performed on a semi-continuous apparatus (at pressures of 150 bar and 250 bar and temperatures of 313.15 K and 333.15 K for oregano extraction; and at pressures of 100 bar and 300 bar and temperatures of 313.15 K and 333.15 K for red beetroot extraction) and various methods such as the microdilution method and the DPPH method were used to determine antimicrobial and antioxidant activity. In the third part, an overview of different methods for recycling carbon fibre reinforced composites is given, including chemical recycling with supercritical fluids. This field has not been well explored, and the approach is relatively new but very interesting from a sustainable point of view. For an economically feasible process design, the thermodynamic and mass transfer data have to be determined. The principles of the future lab- and pilot-scale operations demand these supporting data be known. The results obtained in the frame of this study represent the high added value in the scientific field. They are essential to design and modify processes that yield products that cannot be achieved with conventional production processes.
Keywords: supercritical fluids, alcohols, urea, phase equilibria, viscosity, density, interfacial tension, modified capillary method, isolation methods, supercritical fluid extraction, pharmacological activity, carbon fiber reinforced composites, recycling techniques
Published in DKUM: 11.10.2022; Views: 1029; Downloads: 143
.pdf Full text (4,64 MB)

10.
An evaluation of marine sediments in terms of their usability in the brick industry : case study Port of Koper
Patrik Baksa, Franka Cepak, Rebeka Kovačič Lukman, Vilma Ducman, 2018, original scientific article

Abstract: A dredging process is essential for the development of harbours and ports, allowing the functional daily operation of the port. The management of dredged material represents a worldwide challenge, especially considering unwanted deposition of material. Because of their chemical, petrographic, mineralogical and homogeneity composition, marine sediments could represent an appropriate raw material for the brick industry, particularly for the production of clay blocks, roofing and ceramic tiles. In this study dredged material from Port of Koper was tested for such use, thus various analyses were carried out in order to determine if the dredged material is environmentally friendly and suitable for use in the brick industry. These included: chemical analysis, mineralogical analysis, particle size analysis, chloride content analysis and tests of firing in a gradient furnace. Furthermore, tests of mechanical properties, as well as tests of the frost-resistance of the samples were carried out. On the basis of the primary analyses and samples prepared in a laboratory, it was confirmed that marine sediments from the Port of Koper, without any additives are only conditionally suitable as a source material for producing brick products, because without additives they exhibit too much shrinkage on drying and firing, as well as high water absorption, this can be improved by the incorporation of suitable additives, for example, virgin clay or other suitable waste material. The approach described herewith can also be followed to assess sediments from other ports and rivers regarding its potential use in clay brick sector.
Keywords: dredge marine sediment, recycling, clay bricks, mechanical properties, chemical analysis
Published in DKUM: 21.12.2017; Views: 2628; Downloads: 204
.pdf Full text (447,79 KB)
This document has many files! More...

Search done in 0.29 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica