2.
Razpoznavanje čustvenih izrazov osebe iz slikovnega materiala z algoritmom diferencialne evolucije za izbiro značilnicUroš Mlakar, 2019, doctoral dissertation
Abstract: V disertaciji se ukvarjamo z razvojem učinkovitega programskega sistema za izbiro značilnic, na primeru aplikacije prepoznavanja čustvenih izrazov. Predlagan sistem, ki prepoznava sedem prototipnih čustvenih izrazov,
vključno z nevtralnim izrazom, temelji na histogramih usmerjenih gradientov (HOG) in vektorjih razlik. Izbiro obraznih značilnic smo izvedli z uporabo ustrezno prilagojenega algoritma diferencialne evolucije za večkriterijsko optimizacijo, ki je hkrati minimiziral velikost izbrane podmnožice značilnic in maksimiziral natančnost razpoznavanja čustvenih izrazov. Razvili smo dve strategiji izbire značilnic, poimenovani "specifična” in ”splošna”. Statistični Friedmanov test je pokazal, da je ”splošna” strategija izbire značilnic primernejša. Implementiran sistem za razpoznavo čustvenih izrazov smo preizkusilina treh pogosto uporabljenih javnih podatkovnih bazah. Na podatkovni bazi Cohn-Kanade smo dosegli 98,37 % povprečno uspešnost prepoznavanja čustvenih izrazov, na podatkovni bazi JAFFE 92,75 % uspešnost in na najzahtevnejši podatkovni bazi MMI s spontanimi čustvenimi izrazi 84,07 % uspešnost. Število uporabljenih značilnic smo uspeli zmanjšati za 89 % originalne velikosti vektorja značilnic. Predlagan algoritem po uspešnosti sodi v sam vrh algoritmov za prepoznavanje čustvenih izrazov oseb, hkrati pa signifikantno zmanjša število uporabljenih značilnic, kar posledično pomeni nižjo računsko zahtevnost učenja klasifikatorjev. S to disertacijo smo demonstrirali učinkovito uporabo algoritma diferencialne evolucije za večkriterijsko optimizacijo na problemu prepoznavanja čustvenih izrazov.
Keywords: razpoznavanje čustvenih izrazov, izbira značilnic, diferencialna evolucija, razlike vektorjev značilnic, večkriterijska optimizacija
Published in DKUM: 11.03.2019; Views: 1799; Downloads: 219
Full text (1,78 MB)