| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 5 / 5
First pagePrevious page1Next pageLast page
1.
Effects of ground granulated blast-furnace slag on the index and compaction parameters of clayey soils
Osman Sivrikaya, Selman Yavascan, Emre Cecen, 2014, original scientific article

Abstract: The use of industrial wastes in soil stabilization not only provides for the re-use of waste materials, which may cause environmental pollution, but also leads to cost benefits. In this context, the use of industrial wastes in the stabilization of fine-grained soils has become a research topic in recent years. The aim of this study is to evaluate the potential use of granulated blast-furnace slag (GBFS) in clayey soil stabilization. In this study, the GBFS obtained from the Iskenderun iron-steel plant as an industrial waste was ground into two different fineness levels, and the effects of their incorporation into low-plasticity Kolsuz clay and high-plasticity bentonite clay in various rates (5%, 10%, 20%, 30%, and 50%) on the particle weight of unit volume, the consistency limits, and the compaction parameters are investigated. Based on the experimental results, it is clear that the GBFS has a positive effect on the stabilization of both clayey soils. It was also concluded that the improvement in bentonite clay is greater than that in Kolsuz clay. Thus, GBFS seems to be a promising material for the stabilization of clayey soils.
Keywords: clayey soils, index properties, granulated blast-furnace slag, stabilization
Published in DKUM: 14.06.2018; Views: 933; Downloads: 148
.pdf Full text (134,83 KB)
This document has many files! More...

2.
The influence of porosity on geomechanical characteristics of snail soil in the Ljubljana Marsh
Bojan Žlender, Ludvik Trauner, 2006, original scientific article

Abstract: This article focusses on mineralogical and physical characteristics of snail soil and their influence on parameter values of geomechanical characteristics.Snail soil, which got its name from fossil remains, is a typical layer observed in the Ljubljana marsh. It is distincltly porous, saturated and in a liquid consistency state. Snail soil was investigated for mineralogical and physical characteristics in the Laboratory of Soil Mechanics, Faculty of Civil Engineering of the University in Maribor. Mineral and chemical composition, visual appearance, specific surface and grain property were determined. Physical characyteristics show that snail soil is saturated in nature, highly porous and almost liquid. Geomechanical characteristics were investigated for their interdependency on physical characteristics. A series of triaxial tests were performed on snail soil samples of different porosity, density and water content. Cylindrical samples of the height of 100 mm and the diameter of 50 mm were tested using three-axial testing apparatus. The results of the tests show that interdependency exists between geomechanical characteristics and porosity. These relationships can be expressed as functions of density, porosity or water content. It is evident from the results that changes of the coefficient of permeability, the coefficient of consolidation, and the coefficient of volume compressibility are nonlinear with respect to changes in porosity. Changes of mechanical parameters, such as Young`s modulus, Poisson`s ratio andfriction angle are indistinct and almost linear at lower changes of porosity.
Keywords: geomechanics, properties of soils, snail soil, triaxial testing, porosity, permeability, consolidation, Young`s modulus, Poisson`s ratio, shear angle
Published in DKUM: 17.05.2018; Views: 1623; Downloads: 89
.pdf Full text (486,06 KB)
This document has many files! More...

3.
Undrained shear strength of saturated cohesive soils depending on consolidation pressure and mineralogical properties
Bojana Dolinar, 2004, original scientific article

Abstract: The relationship between the water content and the undrained shear strength of finely grained soils can be described with a nonlinear function in which the type of soils is determined by two parameters. These parameters depend primarily on the size of clay minerals, their quantity in soil composition and the interlayer water quantity in expanding clay minerals. This article asserts that there exists also the exactly defined relationship also between the water content and consolidation pressure. In the function describing this relationship, the type of soil is determined by two parameters. They can be expressed depending on the same mineralogical properties of soils as the values of parameters in the function showing the relationship between the water content and the undrained shear strength. These findings allow us to express the ratio between undrained shear strength and consolidation pressure depending on mineralogical properties of soils.
Keywords: soil mechanics, properties of soils, clays, specific surface, undrained shear strenght, compressibility
Published in DKUM: 15.05.2018; Views: 1513; Downloads: 182
.pdf Full text (103,26 KB)
This document has many files! More...

4.
Undrained shear strength in dependence on the quantity of free water and firmly adsorbed water in fully saturated clays
Bojana Dolinar, Ludvik Trauner, 2003, original scientific article

Abstract: The article describes the dependence between the undrained shear strength of fully saturated cohesive soils, the quantity of intergrain water and mineralogical properties of soils on the basis of theoretical analysis and practical tests on monomineral clay samples, it was determined that the total quantity of intergrain water is composed of free pore water and the firmly adsorbed water on the external surface of clay grains. The undrained shear strength of saturated soils is precisely dependent on the quantity of free water. The amount of free water and likewise the thickness of the water film around the clay grains are the same for different soils at the same undrained shear strength. The total quantity of firmly adsorbed water and the total quantity of integration water depends on the specific surface of soils.
Keywords: soil mechanics, properties of soils, clays, water
Published in DKUM: 01.06.2012; Views: 2071; Downloads: 32
URL Link to full text

5.
Impact of soil composition on fall cone test results : technical note
Bojana Dolinar, Ludvik Trauner, 2005, original scientific article

Abstract: The cone penetrometer method is being increasingly used for the determination of the liquid limit of cohesive soils. The same method can be used to determine the plastic limit according to the known relationship between soil moisture content and depth of cone penetration. This relationship is non-linear, yet becomes linear on a log-log scale resulting in a simple methodof determination of liquid limit and plastic limit values. This technical note determines the soil properties that define these index parameters. Experimentally obtained results suggest that the index parameters primarily depend on the type, size, and quantity of the clay minerals in soil.Soil index parameters such as the liquid limit and plastic limit can be determined from knowledge of the mineralogical properties of the soil because this dependence appears well defined.
Keywords: soil mechanics, soil tests, clays, cohesive soils, soil properties, Attenberg limits, cone penetration tests
Published in DKUM: 01.06.2012; Views: 2316; Downloads: 64
URL Link to full text

Search done in 0.1 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica