1.
Konfiguracija produktnega kataloga s pomočjo velikih jezikovnih modelov : diplomsko deloLuka Balaban, 2024, undergraduate thesis
Abstract: Zaključno delo obravnava problem kompleksnosti konfiguracije produktnih katalogov v sistemu Monetization podjetja Tridens, kjer se uporabniki pogosto soočajo z izzivi pri razumevanju in nastavitvi zapletenih obračunskih modelov. Cilj dela je razviti umetno inteligenco, ki bo s pomočjo velikih jezikovnih modelov (LLM), kot je ChatGPT, omogočila enostavnejšo in bolj intuitivno konfiguracijo produktnih katalogov. V okviru raziskave smo analizirali obstoječo tehnično dokumentacijo in bazo znanja podjetja Tridens ter izvedli integracijo modela ChatGPT v zaledni sistem za avtomatizirano generiranje in prilagajanje produktnih katalogov. Rešitev smo preizkusili s testnim sklopom povpraševanj, pri čemer smo primerjali rezultate generiranih konfiguracij z referenčnimi primeri. Rezultati so pokazali, da umetna inteligenca uspešno izboljšuje natančnost in hitrost konfiguracije produktnih katalogov, hkrati pa zmanjšuje potrebo po ročnem delu. Zaključek naloge potrjuje, da uporaba velikih jezikovnih modelov prispeva k izboljšanju uporabniške izkušnje in poenostavitvi konfiguracijskih procesov, kar lahko podjetjem, kot je Tridens, prinese pomembne prednosti v konkurenčnem okolju.
Keywords: veliki jezikovni modeli, umetna inteligenca, produktni katalog, chatGPT, java
Published in DKUM: 06.02.2025; Views: 0; Downloads: 21
Full text (3,25 MB)