| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 1 / 1
First pagePrevious page1Next pageLast page
Bucolic complexes
Boštjan Brešar, Jérémie Chalopin, Victor Chepoi, Tanja Dravec, Damian Osajda, 2012, original scientific article

Abstract: In this article, we introduce and investigate bucolic complexes, a common generalization of systolic complexes and of CAT(0) cubical complexes. This class of complexes is closed under Cartesian products and amalgamations over some convex subcomplexes. We study various approaches to bucolic complexes: from graph-theoretic and topological viewpoints, as well as from the point of view of geometric group theory. Bucolic complexes can be defined as locally-finite simply connected prism complexes satisfying some local combinatorial conditions. We show that bucolic complexes are contractible, and satisfy some nonpositive-curvature-like properties. In particular, we prove a version of the Cartan-Hadamard theorem, the fixed point theorem for finite group actions, and establish some results on groups acting geometrically on such complexes. We also characterize the 1-skeletons (which we call bucolic graphs) and the 2-skeletons of bucolic complexes. In particular, we prove that bucolic graphs are precisely retracts of Cartesian products of locally finite weakly bridged graphs (i.e., of 1-skeletons of weakly systolic complexes). We show that bucolic graphs are exactly the weakly modular graphs satisfying some local conditions formulated in terms of forbidden induced subgraphs and that finite bucolic graphs can be obtained by gated amalgamations of products of weakly bridged graphs.
Keywords: CAT(0) kubni in sistolični kompleksi, medianski in mostovni grafi, zastražena amalgamacija, kartezični produkt, prizmični kompleksi, retrakti, fiksne točke, asferičnost, CAT(0) cubical and systolic complexes, median and bridged graphs, gated amalgamation, Cartesian product, prism complexes, retracts, fixed points, asphericity
Published in DKUM: 10.07.2015; Views: 768; Downloads: 19
URL Link to full text

Search done in 0.01 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica