| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Nekatere lastnosti posplošenih grafov Sierpińskega
Teja Bezgovšek, 2019, master's thesis

Abstract: V magistrskem delu so obravnavane in s slikovnimi zgledi predstavljene nekatere lastnosti posplošenih grafov Sierpińskega, zgrajenih na poljubnem baznem grafu G. V prvem poglavju so povzete osnovne definicije iz teorije grafov, ki so pomembne pri razumevanju magistrskega dela. Nato so predstavljeni grafi Sierpińskega in definirani posplošeni grafi Sierpińskega. Tretje poglavje obravnava popolno kromatično število obravnavanih grafov, med drugim tudi za konkretne primere baznih grafov, in sicer graf hiše, kolo, cikel in hiperkocko. V četrtem poglavju so z zgledi podane formule za izračun števila listov, število vozliščnega pokritja in neodvisno število v posplošenih grafih Sierpińskega. V poglavju je tudi dokazano, da sta kromatično in klično število teh grafov enaka kot v bazi. V nadaljevanju je podana zgornja meja dominacijskega števila obravnavanih grafov in tudi točno dominacijsko število teh grafov z dotičnimi lastnostmi. V zadnjem poglavju je dokazana spodnja meja krepke metrične dimenzije posplošenih grafov Sierpińskega in podana je formula za izračun te lastnosti v obravnavanih grafih, v katerih je vsako notranje vozlišče presečno vozlišče.
Keywords: posplošeni grafi Sierpińskega, popolno kromatično število, število vozliščnega pokritja, dominacijsko število, krepka metrična dimenzija.
Published in DKUM: 04.03.2019; Views: 1275; Downloads: 101
.pdf Full text (627,83 KB)

2.
Behzad-Vizing conjecture and Cartesian-product graphs
Blaž Zmazek, Janez Žerovnik, 2004, published scientific conference contribution

Abstract: We prove the following theorem: if the Behzad-Vizing conjecture is true for graphs ▫$G$▫ and ▫$H$▫, then is it true for the cartesian product ▫$G Box H$▫.
Keywords: matematika, teorija grafov, kartezični produkt grafov, kromatično število, popolno kromatično število, Vizingova domneva, mathematics, graph theory, Cartesian graph product, chromatic number, total chromatic number, Vizing conjecture
Published in DKUM: 10.07.2015; Views: 1548; Downloads: 87
URL Link to full text

Search done in 0.06 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica