| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 28
First pagePrevious page123Next pageLast page
1.
Emulsion templated porous poly(thiol-enes): influence of photopolymerisation, emulsion composition, and phase behaviour on the porous structure and morphology
Viola Hobiger, Muzafera Paljevac, Peter Krajnc, 2022, original scientific article

Abstract: 1,6-hexanediol diacrylate (HDDA) or divinyl adipate (DVA) and pentaerythritol tetrakis(3- mercaptopropionate) (TT) were polymerised via a thiol-ene radical initiated photopolymerisation using emulsions with a high volume fraction of internal droplet phase and monomers in the continuous phase as precursors. The porous structure derived from the high internal phase emulsions (HIPEs) followed the precursor emulsion setup resulting in an open porous cellularly structured polymer. Changing the emulsion composition and polymerisation conditions influenced the resulting morphological structure significantly. The investigated factors influencing the polymer monolith morphology were the emulsion phase ratio and surfactant concentration, leading to either interconnected cellular type morphology, bicontinuous porous morphology or a hollow sphere inverted structure of the polymerised monoliths. The samples with interconnected cellular morphology had pore diameters between 4 µm and 10 µm with approx. 1 µm sized interconnecting channels while samples with bicontinuous morphology featured approx. 5 µm wide pores between the polymer domains. The appropriate choice of emulsion composition enabled the preparation of highly porous poly(thiol-enes) with either polyHIPE or bicontinuous morphology. The porosities of the prepared samples followed the emulsion droplet phase share and could reach up to 88%.
Keywords: high internal phase emulsions, thiol-ene polymerisation, polyHIPE, bicontinuous structure, phase inversion, poly(thiol-enes)
Published in DKUM: 13.05.2025; Views: 0; Downloads: 0
.pdf Full text (5,24 MB)
This document has many files! More...

2.
Effect of micro- and nano-lignin on the thermal, mechanical, and antioxidant properties of biobased PLA–lignin composite films
Sofia P. Makri, Eleftheria Xanthopoulou, Panagiotis A. Klonos, Alexios Grigoropoulos, Apostolos Kyritsis, Konstantinos Tsachouridis, Antonios Anastasiou, Ioanna Deligkiozi, Nikolaos P. Nikolaidis, Dimitrios Bikiaris, 2022, original scientific article

Abstract: Bio-based poly(lactic acid) (PLA) composite films were produced using unmodified soda micro- or nano-lignin as a green filler at four different contents, between 0.5 wt% and 5 wt%. The PLA– lignin composite polymers were synthesized by solvent casting to prepare a masterbatch, followed by melt mixing. The composites were then converted into films, to evaluate the effect of lignin content and size on their physicochemical and mechanical properties. Differential scanning calorimetry (DSC), supported by polarized light microscopy (PLM), infrared spectroscopy (FTIR-ATR), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were employed to investigate the PLA crystallization and the interactions with Lignin (L) and Nanolignin (NL). The presence of both fillers (L and NL) had a negligible effect on the glass transition temperature (chain diffusion). However, it resulted in suppression of the corresponding change in heat capacity. This was indicative of a partial immobilization of the PLA chains on the lignin entities, due to interfacial interactions, which was slightly stronger in the case of NL. Lignin was also found to facilitate crystallization, in terms of nucleation; whereas, this was not clear in the crystalline fraction. The addition of L and NL led to systematically larger crystallites compared with neat PLA, which, combined with the higher melting temperature, provided indications of a denser crystal structure in the composites. The mechanical, optical, antioxidant, and surface properties of the composite films were also investigated. The tensile strength and Young’s modulus were improved by the addition of L and especially NL. The UV-blocking and antioxidant properties of the composite films were also enhanced, especially at higher filler contents. Importantly, the PLA–NL composite films constantly outperformed their PLA–L counterparts, due to the finer dispersion of NL in the PLA matrix, as verified by the TEM micrographs. These results suggest that bio-based and biodegradable PLA films filled with L, and particularly NL, can be employed as competitive and green alternatives in the food packaging industry.
Keywords: poly(lactic acid), PLA, lignin, nanolignin, composite films, nucleation, mechanical properties, antioxidant activity, food packaging
Published in DKUM: 26.03.2025; Views: 0; Downloads: 1
.pdf Full text (9,96 MB)
This document has many files! More...

3.
Poly(vinyl pyridine) and Its quaternized derivatives: understanding their solvation and solid state properties
Katerina Mavronasou, Alexandra Zamboulis, Panagiotis A. Klonos, Apostolos Kyritsis, Dimitrios Bikiaris, Raffaello Papadakis, Ioanna Deligkiozi, 2022, original scientific article

Abstract: A series of N-methyl quaternized derivatives of poly(4-vinylpyridine) (PVP) were synthesized in high yields with different degrees of quaternization, obtained by varying the methyl iodide molar ratio and affording products with unexplored optical and solvation properties. The impact of quaternization on the physicochemical properties of the copolymers, and notably the solvation properties, was further studied. The structure of the synthesized polymers and the quaternization degrees were determined by infrared and nuclear magnetic spectroscopies, while their thermal characteristics were studied by differential scanning calorimetry and their thermal stability and degradation by thermogravimetric analysis (TG-DTA). Attention was given to their optical properties, where UV-Vis and diffuse reflectance spectroscopy (DRS) measurements were carried out. The optical band gap of the polymers was calculated and correlated with the degree of quaternization. The study was further orientated towards the solvation properties of the polymers in binary solvent mixtures that strongly depend on the degree of quaternization, enabling a better understanding of the key polymer (solute)-solvent interactions. The assessment of the underlying solvation phenomena was performed in a system of different ratios of DMSO/H2O and the solvatochromic indicator used was Reichardt’s dye. Solvent polarity parameters have a significant effect on the visible spectra of the nitrogen quaternization of PVP studied in this work and a detailed path towards this assessment is presented.
Keywords: poly(4-vinylpyridine), poly(N-methyl-4-vinylpyridinium iodide), quaternization, solvatochromism, preferential solvation, optical energy gap
Published in DKUM: 26.03.2025; Views: 0; Downloads: 2
.pdf Full text (3,36 MB)
This document has many files! More...

4.
Statistical modeling and optimization of the drawing process of bioderived polylactide/poly(dodecylene furanoate) wet-spun fibers
Daniele Rigotti, Giulia Fredi, Davide Perin, Dimitrios Bikiaris, Alessandro Pegoretti, Andrea Dorigato, 2022, original scientific article

Abstract: Drawing is a well-established method to improve the mechanical properties of wet-spun fibers, as it orients the polymer chains, increases the chain density, and homogenizes the microstructure. This work aims to investigate how drawing variables, such as the draw ratio, drawing speed, and temperature affect the elastic modulus (E) and the strain at break (εB) of biobased wet-spun fibers constituted by neat polylactic acid (PLA) and a PLA/poly(dodecamethylene 2,5-furandicarboxylate) (PDoF) (80/20 wt/wt) blend. Drawing experiments were conducted with a design of experiment (DOE) approach following a 24 full factorial design. The results of the quasi-static tensile tests on the drawn fibers, analyzed by the analysis of variance (ANOVA) and modeled through the response surface methodology (RSM), highlight that the presence of PDoF significantly lowers E, which instead is maximized if the temperature and draw ratio are both low. On the other hand, εB is enhanced when the drawing is performed at a high temperature. Finally, a genetic algorithm was implemented to find the optimal combination of drawing parameters that maximize both E and εB. The resulting Pareto curve highlights that the temperature influences the mechanical results only for neat PLA fibers, as the stiffness increases by drawing at lower temperatures, while optimal Pareto points for PLA/PDoF fibers are mainly determined by the draw ratio and the draw rate.
Keywords: fibers, poly(lactic acid), furanoate polyesters, drawing, response surface methodology, genetic algorithms
Published in DKUM: 24.03.2025; Views: 0; Downloads: 2
.pdf Full text (1,23 MB)
This document has many files! More...

5.
Compatibilization of polylactide/poly(ethylene 2,5-furanoate) (PLA/PEF) blends for sustainable and bioderived packaging
Giulia Fredi, Andrea Dorigato, Alessandro Dussin, Eleftheria Xanthopoulou, Dimitrios Bikiaris, Luigi Botta, Vincenzo Fiore, Alessandro Pegoretti, 2022, original scientific article

Abstract: Despite the advantages of polylactide (PLA), its inadequate UV-shielding and gas-barrier properties undermine its wide application as a flexible packaging film for perishable items. These issues are addressed in this work by investigating the properties of melt-mixed, fully bioderived blends of polylactide (PLA) and poly(ethylene furanoate) (PEF), as a function of the PEF weight fraction (1–30 wt %) and the amount of the commercial compatibilizer/chain extender Joncryl ADR 4468 (J, 0.25–1 phr). J mitigates the immiscibility of the two polymer phases by decreasing and homogenizing the PEF domain size; for the blend containing 10 wt % of PEF, the PEF domain size drops from 0.67 ± 0.46 µm of the uncompatibilized blend to 0.26 ± 0.14 with 1 phr of J. Moreover, the increase in the complex viscosity of PLA and PLA/PEF blends with the J content evidences the effectiveness of J as a chain extender. This dual positive contribution of J is reflected in the mechanical properties of PLA/PEF blends. Whereas the uncompatibilized blend with 10 wt % of PEF shows lower mechanical performance than neat PLA, all the compatibilized blends show higher tensile strength and strain at break, while retaining their high elastic moduli. The effects of PEF on the UV- and oxygen-barrier properties of PLA are also remarkable. Adding only 1 wt % of PEF makes the blend an excellent barrier for UV rays, with the transmittance at 320 nm dropping from 52.8% of neat PLA to 0.4% of the sample with 1 wt % PEF, while keeping good transparency in the visible region. PEF is also responsible for a sensible decrease in the oxygen transmission rate, which decreases from 189 cc/m2 ·day for neat PLA to 144 cc/m2 ·day with only 1 wt % of PEF. This work emphasizes the synergistic effects of PEF and J in enhancing the thermal, mechanical, UV-shielding, and gas-barrier properties of PLA, which results in bioderived blends that are very promising for packaging applications.
Keywords: polylactide, furanoates, poly(ethylene furanoate), blends, compatibilization, gas-permeability, UV-shielding
Published in DKUM: 24.03.2025; Views: 0; Downloads: 3
.pdf Full text (4,33 MB)
This document has many files! More...

6.
Improving the Thermomechanical Properties of Poly(lactic acid) via Reduced Graphene Oxide and Bioderived Poly(decamethylene 2,5-furandicarboxylate)
Giulia Fredi, Mahdi Karimi Jafari, Andrea Dorigato, Dimitrios Bikiaris, Alessandro Pegoretti, 2022, original scientific article

Abstract: Polylactide (PLA) is the most widely used biopolymer, but its poor ductility and scarce gas barrier properties limit its applications in the packaging field. In this work, for the first time, the properties of PLA solvent-cast films are improved by the addition of a second biopolymer, i.e., poly(decamethylene 2,5-furandicarboxylate) (PDeF), added in a weight fraction of 10 wt%, and a carbon-based nanofiller, i.e., reduced graphene oxide (rGO), added in concentrations of 0.25–2 phr. PLA and PDeF are immiscible, as evidenced by scanning electron microscopy (SEM) and Fouriertransform infrared (FTIR) spectroscopy, with PDeF spheroidal domains showing poor adhesion to PLA. The addition of 0.25 phr of rGO, which preferentially segregates in the PDeF domains, makes them smaller and considerably rougher and improves the interfacial interaction. Differential scanning calorimetry (DSC) confirms the immiscibility of the two polymer phases and highlights that rGO enhances the crystallinity of both polymer phases (especially of PDeF). Thermogravimetric analysis (TGA) highlights the positive impact of rGO and PDeF on the thermal degradation resistance of PLA. Quasi-static tensile tests evidence that adding 10 wt% of PDeF and a small fraction of rGO (0.25 phr) to PLA considerably enhances the strain at break, which raises from 5.3% of neat PLA to 10.0% by adding 10 wt% of PDeF, up to 75.8% by adding also 0.25 phr of rGO, thereby highlighting the compatibilizing role of rGO on this blend. On the other hand, a further increase in rGO concentration decreases the strain at break due to agglomeration but enhances the mechanical stiffness and strength up to an rGO concentration of 1 phr. Overall, these results highlight the positive and synergistic contribution of PDeF and rGO in enhancing the thermomechanical properties of PLA, and the resulting nanocomposites are promising for packaging applications.
Keywords: nanocomposites, reduced graphene oxide, poly(decamethylene 2, 5-furandicarboxylate), furanoate polyesters, polylactic acid, compatibilization
Published in DKUM: 20.03.2025; Views: 0; Downloads: 1
.pdf Full text (16,75 MB)
This document has many files! More...

7.
Unlocking innovation: Novel films synthesised and structurally analysed from poly (l-lactide-co-ethylene adipate) block copolymers blended with poly(lactic acid)
Athira John, Klementina Pušnik Črešnar, Johan Stanley, Sabina Vohl, Damjan Makuc, Dimitrios Bikiaris, Lidija Fras Zemljič, 2025, original scientific article

Abstract: This study addresses the inherent shortcomings of poly (lactic acid) (PLA), a biodegradable polymer widely used in industries such as packaging and biomedical applications. The principal challenge of PLA resides in its low crystallinity, which detrimentally affects its mechanical properties and thermal stability. Additionally, PLA is prone to water and hydrolysis, which compromises its chemical resistance and can lead to degradation over time. To overcome surmount these limitations, the study focuses on the development of hybrid films through the blending of PLA with poly (l-lactide-co-ethylene adipate) (pLEA) block copolymers. The objective is to augment the crystallinity, mechanical performance, and chemical resistance of the resulting materials. The study employs a range of analytical techniques, including Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Polarised Light Microscopy (PLM), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA), to thoroughly characterize the copolymers and blend films. By systematically selecting blending ratios and processing methodologies, the study demonstrates enhancements in the properties of the resultant hybrid films compared to neat PLA. Specifically, the structure of films significantly changed from amorphous to crystalline in a short duration - 5 min, of annealing., leading to better tensile strength, modulus and reduced wettability, which are crucial for applications requiring durability and resistance to environmental factors. Films made from 30 wt% of pLEA 97.5/2.5 with 70 % of PLA by fast cooling exhibited outstanding mechanical properties, with a tensile strength 20 MPa higher than that of neat PLA films. Additionally, the chemical resistance may be improved, as evidenced by a decrease in wettability by approximately 15° and a reduction in the polar component of the surface free energy by about 7 mN/m. Hydrophobic, water-repellent materials resist penetration by water and other polar solvents, reducing exposure to corrosive substances and enhancing chemical resistance through barrier protection. Overall, this research addresses the limitations of PLA through innovative copolymerization and blending strategies, offering valuable insights into optimizing the material's properties for various practical applications.
Keywords: Poly(lactic acid), Poly(l-lactide-co-ethylene adipate), copolymer, blend, crystallinity
Published in DKUM: 13.03.2025; Views: 0; Downloads: 7
.pdf Full text (10,53 MB)
This document has many files! More...

8.
Thermal, molecular dynamics, and mechanical properties of poly(ethylene furanoate)/poly(ε-caprolactone) block copolymers
Johan Stanley, Panagiotis A. Klonos, Aikaterini Teknetzi, Nikolaos Rekounas, Apostolos Kyritsis, Lidija Fras Zemljič, Dimitra A. Lambropoulou, Dimitrios Bikiaris, 2024, original scientific article

Abstract: This study presents the synthesis and characterization of a series of multiblock copolymers, poly(ethylene 2,5-furandicarboxylate)-poly(ε-caprolactone) (PEF-PCL), created through a combination of the two-step melt polycondensation method and ring opening polymerization, as sustainable alternatives to fossil-based plastics. The structural confirmation of these block copolymers was achieved through Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), ensuring the successful integration of PEF and PCL segments. X-ray Photoelectron Spectroscopy (XPS) was employed for chemical bonding and quantitative analysis, providing insights into the distribution and compatibility of the copolymer components. Differential Scanning Calorimetry (DSC) analysis revealed a single glass transition temperature (Tg), indicating the effective plasticizing effect of PCL on PEF, which enhances the flexibility of the copolymers. X-ray Diffraction (XRD) studies highlight the complex relationship between PCL content and crystallization in PEF-PCL block copolymers, emphasizing the need to balance crystallinity and mechanical properties for optimal material performance. Broadband Dielectric Spectroscopy (BDS) confirmed excellent distribution of PEF-PCL without phase separation, which is vital for maintaining consistent material properties. Mechanical properties were evaluated using Nanoindentation testing, demonstrating the potential of these copolymers as flexible packaging materials due to their enhanced mechanical strength and flexibility. The study concludes that PEF-PCL block copolymers are promising candidates for sustainable packaging solutions, combining environmental benefits with desirable material properties.
Keywords: poly(ethylene furanoate), poly(ε-caprolactone), block copolymers, thermal properties, molecular dynamics, crystallinity, mechanical properties, flexible packaging
Published in DKUM: 13.03.2025; Views: 0; Downloads: 5
.pdf Full text (4,73 MB)
This document has many files! More...

9.
Thermal decomposition kinetics and mechanism of poly(ethylene 2,5-furan dicarboxylate) Nanocomposites for food packaging applications
Johan Stanley, Evangelia Tarani, Nina Maria Ainali, Tjaša Kraševac Glaser, Lidija Fras Zemljič, Konstantinos Chrissafis, Dimitra A. Lambropoulou, Dimitrios Bikiaris, 2024, original scientific article

Abstract: Poly(ethylene 2,5-furan dicarboxylate) (PEF) based nanocomposites containing different nanoparticles like Ag, TiO2, ZnO, ZrO2 Ce-Bioglass, have been synthesized via in-situ polymerization techniques targeting food pack aging applications. Zeta potential measurements showed an increase in the negative zeta potential value due to an increase in the surface charge density of the nanocomposites. Thermogravimetric analysis results proved that, except PEF-ZnO nanocomposite, all the other nanocomposites exhibited good resistance to thermal degradation without serious mass loss until 330 ◦C. Thermal decomposition kinetic analysis and the dependence of activation energy on the degree of conversion (α), indicated that the presence of ZnO nanoparticles influences, the degradation mechanism of PEF. In contrast, the presence of Ce-Bioglass nanoparticles leads to a slower degra dation process, contributing to the enhanced resistance to thermal degradation of the PEF-Bioglass nano composite. The thermal degradation mechanism of PEF nanocomposites analyzed by pyrolysis‒gas chromatography/mass spectrometry (Py-GC/MS) indicated that the primary thermal degradation mechanism for the studied nanocomposites was β-hydrogen bond scission, while to a lesser extent, α-hydrogen bond scission products were noted in PEF-TiO2 and PEF-ZrO2 nanocomposites.
Keywords: bio based polymers, Poly(ethylene 2, 5-furan dicarboxylate), nanoparticles, thermal properties, nanocomposites, decomposition mechanism
Published in DKUM: 13.03.2025; Views: 0; Downloads: 4
.pdf Full text (1,89 MB)
This document has many files! More...

10.
Study on impact of monomers towards high molecular weight bio-based poly(ethylene furanoate) via solid state polymerization technique
Johan Stanley, Eleftheria Xanthopoulou, Margaritis Kostoglou, Lidija Fras Zemljič, Dimitra A. Lambropoulou, Dimitrios Bikiaris, 2024, original scientific article

Abstract: In recent years, bio-based poly(ethylene furanoate) has gained the attention of packaging industries owing to its remarkable properties as a promising alternative to fossil-based polymers. It is necessary to synthesize high-molecular-weight polymers using effective and straightforward techniques for their commercialization. In this present work, poly(ethylene 2,5-furan dicarboxylate) (PEF) was produced with a high molecular weight of 0.43 dL/g using 2,5-furan dicarboxylic acid (FDCA) or its derivative Dimethyl-2,5-Furan dicarboxylate (DMFD), followed by solid-state polymerization (SSP) conducted at different temperatures and reaction times. The intrinsic viscosity ([η]), carboxyl end-group concentration (–COOH), and thermal properties of the produced polyesters were evaluated using differential scanning calorimetry (DSC). The results indicated that the SSP process improved the melting temperature and crystallinity of both the PEF samples as the reaction times and temperatures increased, as corroborated by DSC and X-ray diffraction (XRD) analyses. Additionally, both intrinsic viscosity and number-average molecular weight saw an increase with longer SSP durations and higher temperatures, while the concentration of carboxyl end groups decreased, aligning with expectations. The overall results indicate that PEF (DMFD) samples exhibited a significant increase in crystallization and molecular weight, attributed to their lower degree of crystallinity and their monomer’s high purity.
Keywords: bio-based polymers, 2, 5-furan dicarboxylic acid, dimethyl 2, 5-furan dicarboxylate, poly(ethylene 2, 5-furan dicarboxylate), poly(ethylene furanoate), solid state polymerization, thermal properties
Published in DKUM: 10.03.2025; Views: 0; Downloads: 6
.pdf Full text (4,07 MB)
This document has many files! More...

Search done in 0.1 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica