| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 18
First pagePrevious page12Next pageLast page
1.
REŠEVANJE LINEARNIH REKURZIVNIH ENAČB
Sonja Cank, 2010, undergraduate thesis

Abstract: V diplomski nalogi so predstavljene osnove kombinatorike, ki so potrebne za razumevanje rekurzije. Reševanje linearnih rekurzivnih enačb,lastnosti ter uporaba pa so jedro diplomskega dela.V uvodnem poglavju je razloºeno, kaj pomeni rekurzivno podajanje formule. Nato je na primeru razloºen postopek re²evanja linearnih rekurzivnih ena£b. Najprej si bomo pogledali homogene linearne rekurzivne enačbe s konstantnimi koeficienti, na to nehomogene enačbe in za konec še reševanje sistema linearnih rekurzivnih enačb. V vsakem poglavju so rešeni konkretni primeri.
Keywords: matematika, kombinatorika, linearne rekurzivne enačbe, karakteristični polinom, homogena enačba, splošna rešitev, partikularna rešitev.
Published: 03.02.2021; Views: 121; Downloads: 13
.pdf Full text (276,61 KB)

2.
Energija grafa
Katja Zemljič, 2019, master's thesis

Abstract: Magistrsko delo zajema področje kemijske teorije grafov. Energija grafa je ena izmed invariant grafa, ki je povezana s fizikalno-kemijskimi lastnostmi obravnavanih molekul. Energijo grafa definiramo kot vsoto absolutnih vrednosti vseh lastnih vrednosti matrike sosednosti poljubnega grafa. V magistrskem delu si bomo ogledali kako izračunamo energijo poljubnega grafa, njegove spodnje in zgornje meje ter metode dokazovanja za primerjavo energij različnih družin grafov med seboj. Definirali bomo tudi molekulske grafa, ki so za nas pomembni, saj tako povežemo kemijske molekule z njimi pripadajočimi molekulskimi grafi, za katere lahko izračunamo energijo grafa z matematičnim pristopom. V prvem delu je navedenih nekaj pomembnih definicij in izrekov iz področja teorije grafov in linearne algebre, ki jih potrebujemo v nadaljevanju. V drugem delu definiramo energijo grafa in spekter grafa. V tretjem delu sta opisani Hücklova molekularna orbitalna teorija in Coulsonova integralna formula. V četrtem delu navedemo sedem metod dokazovanja za izračun energije grafa, v petem delu pa navedemo spodnje in zgornje meje za nekatere družine grafov. V zadnjem delu je navedena kemijska teorija grafov in definicije molekulskih grafov.
Keywords: Energija grafa, molekulski graf, matrika sosednosti, karakteristični polinom grafa, spekter grafa, Hücklova molekularna orbitalna teorija, Coulsonova integralna formula, metode dokazovanja.
Published: 18.09.2019; Views: 425; Downloads: 86
.pdf Full text (1,27 MB)

3.
Strukturne lastnosti resonančnih grafov tubulenov in fulerenov
Niko Tratnik, 2017, doctoral dissertation

Abstract: Doktorska disertacija obravnava predvsem resonančne grafe tubulenov in fulerenov. V prvem poglavju so predstavljeni nekateri že znani rezultati o resonančnih grafih, prav tako pa je podana struktura doktorske disertacije. V naslednjem poglavju so definirani nekateri osnovni pojmi teorije grafov, ki jih potrebujemo v preostalih poglavjih. V tretjem poglavju so predstavljene tri pomembne družine kemijskih struktur, to so benzenoidni sistemi, tubuleni in fulereni. Omenjene družine predstavljajo molekule, ki jih imenujemo benzenoidni ogljikovodiki, ogljikove nanocevke in fulereni. V četrtem poglavju je najprej pokazana povezava med Kekuléjevimi strukturami določene molekule ter popolnimi prirejanji ustreznega kemijskega grafa. V nadaljevanju poglavja je definiran resonančni graf benzenoidnega sistema, tubulena in fulerena. Glavni namen tega koncepta je modeliranje interakcij med posameznimi Kekuléjevimi strukturami molekule. Nato se lotimo raziskovanja osnovnih lastnosti resonančnih grafov. Pokazano je, da je resonančni graf tubulena ali fulerena dvodelni graf, vsaka njegova povezana komponenta pa je bodisi pot bodisi graf z ožino štiri. Prav tako dokažemo, da je 2-jedro vsake povezane komponente resonančnega grafa širokega tubulena ali fulerena, ki ni pot, vedno 2-povezan graf. Nato podamo primer neskončne družine tubulenov, katerih resonančni grafi niso povezani. Na koncu poglavja definiramo resonančni graf za katerikoli graf, ki je vložen na zaprto ploskev. Dokažemo tudi, da so taki resonančni grafi inducirani podgrafi hiperkock. V petem poglavju definiramo Zhang-Zhangov polinom, ki je namenjen štetju posebnih struktur, imenovanih Clarova pokritja. Dokazano je, da je Zhang-Zhangov polinom grafa, vloženega na zaprto ploskev, enak polinomu kock ustreznega resonančnega grafa. Ta rezultat posplošuje podobne rezultate za benzenoidne sisteme, tubulene in fulerene. Na koncu se ukvarjamo s strukturo distributivne mreže resonančnih grafov. Dokazano je, da je vsaka povezana komponenta resonančnega grafa tubulena graf pokritja neke distributivne mreže. Prav tako pokažemo, da je vsaka povezana komponenta resonančnega grafa tubulena medianski graf, njen graf blokov pa je pot. Nazadnje podamo primer fulerena, katerega resonančni graf ni graf pokritja nobene distributivne mreže.
Keywords: benzenoidni sistem, ogljikova nanocevka, tubulen, fuleren, resonančni graf, Z-transformirani graf, Clarovo pokritje, Zhang-Zhangov polinom, polinom kock, distributivna mreža, medianski graf, graf blokov, grafi na ploskvah
Published: 09.01.2018; Views: 927; Downloads: 158
.pdf Full text (1,40 MB)

4.
Smithova normalna oblika matrike
Aleš Pukšič, 2016, undergraduate thesis

Abstract: V diplomskem delu je predstavljena Smithova normalna oblika kvadratne matrike z elementi iz kolobarja polinomov. Za podano kvadratno matriko izračunamo njeno Smithovo normalno obliko z uporabo elementarnih vrstičnih in stolpičnih transformacij. Za Smithovo normalno obliko matrike je značilno, da je diagonalna matrika s toliko neničelnimi elementi na diagonali, kolikšen je rang matrike, pri tem so diagonalni elementi unitarni polinomi ter prvi diagonalni element deli drugega, drugi deli tretjega in tako naprej do zadnjega neničelnega elementa na diagonali. Smithova normalna oblika matrike nam lahko služi kot orodje za ugotavljanje podobnosti matrik z elementi iz polja.
Keywords: matrika, polinom, deljivost, ekvivalentne matrike, podobne matrike, Smithova normalna oblika matrike
Published: 27.09.2016; Views: 732; Downloads: 54
.pdf Full text (365,05 KB)

5.
Trace-positive polynomials and the quartic tracial moment problem
Sabine Burgdorf, Igor Klep, 2010, original scientific article

Abstract: V članku podamo nekomutativno različico klasičnega Hilbertovega izreka o pozitivnih polinomih stopnje 4 v 2 spremenljivkah: nekomutativni polinom takšnega tipa, ki ima pozitivno sled, je vsota štirih hermitskih kvadratov in komutatorjev. S pomočjo dualnosti ta rezultat uporabimo za študij problema momentov s sledjo.
Keywords: matematika, nekomutativni polinom, sled, vsota hermitskih kvadratov, problem momentov, prosta pozitivnost, mathematics, noncommutative polynomial, trace, sum of hermitian squares, (truncated) moment problem, free positivity
Published: 10.07.2015; Views: 517; Downloads: 89
URL Link to full text

6.
The tracial moment problem and trace-positive polynomials
Igor Klep, 2010, published scientific conference contribution abstract

Keywords: algebra, nekomutativni polinom, komutator, sled, algebra, noncommutative polynomial, commutator, trace
Published: 10.07.2015; Views: 593; Downloads: 39
URL Link to full text

7.
Roots of cube polynomials of median graphs
Boštjan Brešar, Sandi Klavžar, Riste Škrekovski, 2006, original scientific article

Abstract: Polinom kock ▫$c(G,x)$▫ grafa ▫$G$▫ je definiran z ▫$sum_{i ge 0}alpha_i(G)x^i$▫, kjer ▫$alpha_i(G)$▫ označuje število induciranih ▫$i$▫-kock v ▫$G$▫. Naj bo ▫$G$▫ medianski graf. Dokazano je, da je vsaka racionalna ničla polinoma ▫$c(G,x)$▫ oblike ▫$-frac{t+1}{t}$▫ za neko celo število ▫$t>0$▫ in da ima ▫$c(G,x)$▫ vedno realno ničlo na intervalu ▫$[-2,-1)$▫. Nadalje ima ▫$c(G,x)$▫ ▫$p$▫-kratno ničlo natanko tedaj, ko je ▫$G$▫ kartezični produkt ▫$p$▫ dreves istega reda. Grafi acikličnih kubičnih kompleksov so karakterizirani kot grafi za katere velja ▫$c(H,-2)=0$▫ za vsak 2-povezan konveksen podgraf ▫$H$▫.
Keywords: matematika, teorija grafov, polinom kock, koren, medianski graf, kartezični produkt grafov, mathematics, graph theory, cube polynomial, root, median graph, Cartesian product
Published: 10.07.2015; Views: 759; Downloads: 68
URL Link to full text

8.
The cube polynomial and its derivatives: the case of median graphs
Boštjan Brešar, Sandi Klavžar, Riste Škrekovski, 2003, original scientific article

Abstract: Naj bo ▫$alpha_i(G)$▫ število induciranih ▫$i$▫-kock grafa ▫$G$▫. Tedaj je polinom kock ▫$c(G,x)$▫ grafa ▫$G$▫ definiran z ▫$sum_{i ge 0} alpha_i (G) x_i$▫. Pokazano je, da je vsaka funkcija ▫$f$▫ z dvemi predpisanimi naravnimi lastnostmi do faktorja ▫$f(Q_0,x)$▫ enaka polinomu kock. Vpeljan je tudi odvod ▫$partial G$▫ medianskega grafa ▫$G$▫. Dokazano je, da je polinom kock edina funkcija ▫$f$▫ z lastnostjo ▫$f'(G,z) = f(partial G,x)$▫, če je le ▫$f(G,0) = |V(G)|$▫. Dokazanih je tudi več relacij za medianske grafe, ki posplošujejo prej znane rezultate. Na primer, za vsak ▫$s ge 0$▫ velja ▫$c^{(s)}(G, x+1) = sum_{i ge s} frac{c^{(s)}(G,x)}{(i-s)!}$▫.
Keywords: matematika, teorija grafov, polinom kock, odvod grafa, medianski grafi, mathematics, graph theory, cube polynomials, graph derivation, median graphs
Published: 10.07.2015; Views: 594; Downloads: 32
URL Link to full text

9.
Trace-positive polynomials, sums of hermitian squares and the tracial moment problem
Sabine Burgdorf, 2011, doctoral dissertation

Abstract: A polynomial ▫$f$▫ in non-commuting variables is trace-positive if the trace of ▫$f(underline{A})$▫ is positive for all tuples ▫$underline{A}$▫ of symmetric matrices of the same size. The investigation of trace-positive polynomials and of the question of when they can be written as a sum of hermitian squares and commutators of polynomials are motivated by their connection to two famous conjectures: The BMV conjecture from statistical quantum mechanics and the embedding conjecture of Alain Connes concerning von Neumann algebras. First, results on the question of when a trace-positive polynomial in two non-commuting variables can be written as a sum of hermitian squares and commutators are presented. For instance, any bivariate trace-positive polynomial of degree at most four has such a representation, whereas this is false in general if the degree is at least six. This is in perfect analogy to Hilbert's results from the commutative context. Further, a partial answer to the Lieb-Seiringer formulation of the BMV conjecture is given by presenting some concrete representations of the polynomials ▫$S_{m,4}(X^2; Y^2)$▫ as a sum of hermitian squares and commutators. The second part of this work deals with the tracial moment problem. That is, how can one describe sequences of real numbers that are given by tracial moments of a probability measure on symmetric matrices of a fixed size. The truncated tracial moment problem, where one considers only finite sequences, as well as the tracial analog of the ▫$K$▫-moment problem are also investigated. Several results from the classical moment problem in Functional Analysis can be transferred to this context. For instance, a tracial analog of Haviland's theorem holds: A traciallinear functional ▫$L$▫ is given by the tracial moments of a positive Borel measure on symmetric matrices of a fixed size s if and only if ▫$L$▫ takes only positive values on all polynomials which are trace-positive on all tuples of symmetric ▫$s times s$▫-matrices. This result uses tracial versions of the results of Fialkow and Nie on positive extensions of truncated sequences. Further, tracial analogs of results of Stochel and of Bayer and Teichmann are given. Defining a tracial Hankel matrix in analogy to the Hankel matrix in the classical moment problem, the results of Curto and Fialkow concerning sequences with Hankel matrices of finite rank or Hankel matrices of finite size which admit a flat extension also hold true in the tracial context. Finally, a relaxation for trace-minimization of polynomials using sums of hermitian squares and commutators is proposed. While this relaxation is not always exact, the tracial analogs of the results of Curto and Fialkow give a sufficient condition for the exactness of this relaxation.
Keywords: matematika, algebra, polinomi s pozitivno sledjo, prosta algebra, nekomutativni polinom, centralna enostavna algebra, reducirana sled, polinomska identiteta, kvadratna forma, prosta pozitivnost, vsota hermitskih kvadratov, problem momentov, mathematics, algebra, free algebra, noncommutative polynomial, central simple algebra, (reduced) trace, polynomial identity, central polynomial, quadratic form, free positivity, sum of hermitian squares, (truncated) moment problem
Published: 10.07.2015; Views: 986; Downloads: 92
URL Link to full text
This document has many files! More...

10.
Roots of cube polynomials of median graphs
Boštjan Brešar, Sandi Klavžar, Riste Škrekovski, 2003

Abstract: Polinom kock ▫$c(G,X)$▫ grafa ▫$G$▫ je definiran z ▫$sum_{i ge 0}alpha_i(G)x^i$▫, kjer ▫$alpha_i(G)$▫ označuje število induciranih ▫$i$▫-kock v ▫$G$▫. Naj bo ▫$G$▫ medianski graf. Dokazano je, da je vsaka racionalna ničla polinoma ▫$c(G,x)$▫ oblike ▫$-frac{t+1}{t}$▫ za neko celo število ▫$t>0$▫ in da ima ▫$c(G,x)$▫ vedno realno ničlo na intervalu ▫$[-2,-1)$▫. Nadalje ima ▫$c(G,x)$▫ ▫$p$▫-kratno ničlo natanko tedaj, ko je ▫$G$▫ kartezični produkt ▫$p$▫ dreves istega reda. Grafi acikličnih kubičnih kompleksov so karakterizirani kot grafi za katere velja ▫$c(H,-2)=0$▫ za vsak 2-povezan konveksen podgraf ▫$H$▫.
Keywords: matematika, teorija grafov, polinom kock, koren, medianski graf, kartezični produkt grafov, mathematics, graph theory, cube polynomial, root, median graph, Cartesian product
Published: 10.07.2015; Views: 640; Downloads: 73
URL Link to full text

Search done in 0.22 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica