| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 1 / 1
First pagePrevious page1Next pageLast page
1.
Online speech/music segmentation based on the variance mean of filter bank energy
Marko Kos, Matej Grašič, Zdravko Kačič, 2009, original scientific article

Abstract: This paper presents a novel feature for online speech/music segmentation basedon the variance mean of filter bank energy (VMFBE). The idea that encouraged the feature's construction is energy variation in a narrow frequency sub-band. The energy varies more rapidly, and to a greater extent for speech than for music. Therefore, an energy variance in such a sub-band isgreater for speech than for music. The radio broadcast database and the BNSIbroadcast news database were used for feature discrimination and segmentation ability evaluation. The calculation procedure of the VMFBE feature has 4 out of 6 steps in common with the MFCC feature calculation procedure. Therefore, it is a very convenient speech/music discriminator for use in real-time automatic speech recognition systems based on MFCC features, because valuable processing time can be saved, and computation load is only slightly increased. Analysis of the feature's speech/music discriminative ability shows an average error rate below 10% for radio broadcast material and it outperforms other features used for comparison, by more than 8%. The proposed feature as a stand-alone speech/music discriminator in a segmentation system achieves an overall accuracy of over 94% on radio broadcast material.
Keywords: online speech segmentation, algorithm, speech techniques
Published in DKUM: 26.06.2017; Views: 1337; Downloads: 449
.pdf Full text (1,49 MB)
This document has many files! More...

Search done in 0.03 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica