1.
Characterizing Jordan maps on C [ast]-algebras through zero productsJ. Alaminos,
Matej Brešar,
J. Extremera,
A. R. Villena, 2010, original scientific article
Abstract: Naj bosta ▫$A$▫ in ▫$B$▫ ▫$C^ast$▫-algebri, ▫$X$▫ naj bo bistveni Banachov ▫$A$▫-bimodul in naj bosta ▫$T colon A to B$▫ in ▫$S colon A to X$▫ zvezni linearni preslikavi; ▫$T$▫ naj bo surjektivna. Denimo, da je ▫$T(a)T(b) + T(b)T(a) = 0$▫ in ▫$S(a)b + bS(a) + aS(b) + S(b)a = 0$▫, kadarkoli ▫$a, b in A$▫ zadoščata ▫$ab = ba = 0$▫. Dokažemo, da je ▫$T = wPhi$▫ in ▫$S = D + wPsi$▫, kjer ▫$w$▫ leži v centru multiplikatorske algebre ▫$B$▫, ▫$Phicolon A to B$▫ je jordanski epimorfizem, ▫$D colon A to X$▫ je odvajanje in ▫$Psi colon A to X$▫ je bimodulski homomorfizem.
Keywords: matematika, teorija operatorjev, ▫$C^ast$▫-algebra, homomorfizem, jordanski homomorfizem, odvajanje, jordansko odvajanje, ohranjevalec ničelnega produkta, mathematics, operator theory, ▫$C^ast$▫-algebra, homomorphism, Jordan homomorphism, derivation, Jordan derivation, zero-product-preserving map
Published in DKUM: 10.07.2015; Views: 1114; Downloads: 47
Link to full text