Abstract: In the permutation routing problem, each processor is the origin of at most one packet and each processor is the destination of no more than one packet. We study this problem in an hexagonal network (that is, a finite convex subgraph of a triangular grid), a widely used network in practical applications. We use the addressing scheme described by F.G. Nocetti, I. Stojmenovic and J. Zhang (2002, IEEE Trans. on Parallel and Distrib. Systems). In this paper, a distributed optimal routing algorithm for full-duplex hexagonal mesh networks is presented. Furthermore, we prove that this algorithm is oblivious and translation invariant. Keywords:mathematics, hexagonal networks, permutation routing, shortest path, distributed algorithm, communication networks, oblivious algorithm Published: 10.07.2015; Views: 411; Downloads: 21 Link to full text

Abstract: In the permutation routing problem, each processor is the origin of at most one packet and the destination of no more than one packet. The goal is to minimize the number of time steps required to route all packets to their respective destinations, under the constraint that each link can be crossed simultaneously by no more than one packet. We study this problem in a hexagonal network, i.e. a finite subgraph of a triangular grid, which is a widely used network in practical applications. We present an optimal distributed permutation routing algorithm for full-duplex hexagonal networks, using the addressing scheme described by Nocetti et al. Furthermore, we prove that this algorithm is oblivious and translation invariant. Keywords:mathematics, hexagonal networks, permutation routing, shortest path, distributed algorithm, communication networks, oblivious algorithm Published: 10.07.2015; Views: 421; Downloads: 68 Full text (535,46 KB) This document has many files! More...