| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 16
First pagePrevious page12Next pageLast page
1.
Implementation and verification of a geosynthetic-soil interface constitutive model in the Geogrid element of FLAC$^{3D}$
Wu Haimin, Shu Yiming, Dai Linjun, Teng Zhaoming, 2015, original scientific article

Abstract: Due to the complexity of geosynthetic-soil interactions, the simple interface constitutive models embedded in the geosynthetic elements of general computing software cannot satisfy the requirements for a numerical simulation of different geosynthetic-soil interface behaviours. Based on the direct shear test results of a composite geomembrane (CGM) and polyurethane (PUR) mixed crushed stones interface, a nonlinear elastic, perfectly plastic model was used to describe the interface behaviours. The method of incorporating an interface constitutive model into the Geogrid element of a fast Lagrange analysis of continua in three dimensions (FLAC3D) procedure was presented in detail through a user-defined program in the FISH environment. Then the incorporated model of the Geogrid element was used to simulate the direct tests of the CGM-PUR mixed crushed stones interface. The results of the numerical tests confirmed the validity and reliability of the incorporated model. The method and program flowchart for implementing the nonlinear elastic, perfectly plastic interface constitutive model into the Geogrid element can provide a reference for users who want to simulate other geosynthetic-soil interface behaviours with FLAC3D.
Keywords: geosynthetic-soil interface, constitutive model, numerical modelling, FLAC3D, geogrid element
Published in DKUM: 14.06.2018; Views: 863; Downloads: 53
.pdf Full text (269,05 KB)
This document has many files! More...

2.
A coupled thermo-hydro-mechanical model of expansive clays subjected to heating and hydratation
Nadia Laredj, Hanifi Missoum, Karim Bendani, Mustapha Maliki, 2011, original scientific article

Abstract: The focus of this work is to provide a numerical formulation for coupled thermo-hydro-mechanical processes in unsaturated expansive clays, especially in compacted bentonite, with a multiphase fluid flow. The model is characterized by the presence of a deformable solid matrix filled with two fluid phases (liquid water and air). In the proposed model, both pore-water and air transfers are assumed to be governed by the generalized Darcy’s law. Fully coupled, nonlinear partial differential equations are established and then solved by using a Galerkin weighted residual approach in the space domain and an implicit integrating scheme in the time domain. The model has been validated against an experimental test from the literature, which involves bentonite under laboratory conditions. The calculated relative errors between the experimental and numerical results are 3% for the temperature and 7% for the stresses. Consequently, the developed numerical model predicts satisfactory results, when compared to the experimental test measures. The model is applicable to two-dimensional problems with various initial and boundary conditions; non linear soil parameters can be easily included in this model.
Keywords: thermo-hydro-mechanical process, unsaturated bentonite, finite element, numerical modelling, expansive clays
Published in DKUM: 13.06.2018; Views: 602; Downloads: 43
.pdf Full text (389,48 KB)
This document has many files! More...

3.
Advances and uncertainties in the design of anchored retaining walls using numerical modelling
Antun Szavits-Nossan, 2008, original scientific article

Abstract: This paper describes research on the prediction of horizontal displacements and internal forces in an anchored wall for the protection of an excavation, using standard field and laboratory tests and a finite-element programme with a soil model that can simulate the key aspects of soil behaviour at a construction site. It is important to be acquainted with the constitutive model incorporated in the programme, and the selection of the appropriate soil parameters for the numerical analysis is a crucial part of the modelling. As a result, it is useful to carry out numerical simulations of standard laboratory tests with well-known soil behaviour in order to select the relevant parameters for the simulation of the actual construction process. It is shown in this paper that the measurements of the shear-wave velocities, which can provide the soil’s stiffness at very small strains, can also be useful for determining the static stiffness at a magnitude of the strains relevant for the geotechnical structure under consideration, for both cohesive and noncohesive soils. The research was carried out by a detailed analysis of a case history involving an anchored, reinforced concrete wall supporting the walls of an excavation in a relatively stiff soil. The wall displacements were monitored using an installed inclinometer. The major part of the paper is devoted to an analysis of the selection of parameters, especially the stiffness parameters. The simulation of the triaxial, consolidated, undrained tests was used in order to assess the reduction of the secant stiffness modulus with an increase of the relative mobilized shear strength for the hard clay layer according to the published empirical evidence. It is shown that by selecting the appropriate stiffness parameters for the soil model used in the numerical analysis, it is possible to get an acceptable prediction of the anchored-wall displacements. This is just one example of a successful analysis, but it is encouraging in the way that it shows how it is possible to make reliable predictions based on standard field and laboratory tests and with the use of an available computer programme with a realistic soil model.
Keywords: anchored wall, soil model, shear stiffness, numerical modelling, measured displacements
Published in DKUM: 01.06.2018; Views: 535; Downloads: 65
.pdf Full text (426,36 KB)
This document has many files! More...

4.
Numerical modelling of crack growth in a gear tooth root
Srđan Podrug, Srečko Glodež, Damir Jelaska, 2011, original scientific article

Abstract: A computational model for determination of crack growth in a gear tooth root is presented. Two loading conditions are taken into account: (i) normal pulsating force acting at the highest point of the single tooth contact and (ii) the moving load along the tooth flank. In numerical analysis it is assumed that the crack is initiated at the point of the largest stresses in a gear tooth root. The simple Paris equation is then used for a further simulation of the fatigue crack growth. The functional relationship between the stress intensity factor and crack length K=f(a), which is needed for determining the required number of loading cycles N for a crack propagation from the initial to the critical length, is obtained using a displacement correlation method in the framework of the FEM-method considering the effect of crack closure. The model is used for determining fatigue crack growth in a real gear made from case carburised and ground steel 14CiNiMo13-4, where the required material parameters were determined previously by appropriate test specimens. The results of the numerical analysis show that the prediction of crack propagation live and crack path in a gear tooth root are significantly different for both loading conditions considered.
Keywords: zobniki, utrujanje, širjenje razpoke, numerično modeliranje, gears, fatigue, crack growth, numerical modelling
Published in DKUM: 10.07.2015; Views: 812; Downloads: 74
URL Link to full text

5.
Numerical study of heat-transfer enhancement of homogeneous water-Au nanofluid under natural convection
Primož Ternik, Rebeka Rudolf, Zoran Žunič, 2012, original scientific article

Abstract: A numerical analysis is performed to examine the heat transfer of colloidal dispersions of Au nanoparticles in water (Au nanofluids). The analysis used a two-dimensional enclosure under natural convection heat-transfer conditions and has been carried out for the Rayleigh number in the range of 103 < Ra < 105, and for the Au nanoparticles' volume-fraction range of 0 < j < 0.10. We report highly accurate numerical results indicating clearly that the mean Nusselt number is an increasing function of both Rayleigh number and volume fraction of Au nanoparticles. The results also indicate that a heat-transfer enhancement is possible using nanofluids in comparison to conventional fluids. However, low Rayleigh numbers show more enhancement compared to high Rayleigh numbers.
Keywords: natural convection, nanofluid, heat transfer, numerical modelling
Published in DKUM: 10.07.2015; Views: 931; Downloads: 112
URL Link to full text
This document has many files! More...

6.
Numerical study of Rayleigh-Bénard natural-convection heat-transfer characteristics of water-based Au nanofluids
Primož Ternik, Rebeka Rudolf, Zoran Žunič, 2013, original scientific article

Abstract: The present work deals with the natural convection in a square cavity filled with a water-based Au nanofluid. The cavity is heated from the lower and cooled from the adjacent wall, while the other two walls are adiabatic. Theg overning differential equations have been solved with the standard finite volume method and the hydrodynamic and thermal fields have been coupled using the Boussinesq approximation. The main objective of this study is to investigate the influence of the nanoparticlesć volume fraction on the heat-transfer characteristics of Au nanofluids at a given base-fluid (i.e., water) Rayleigh number Rabf. Accurate results are presented over a wide range of the base-fluid Rayleigh numbers (102 £ Rabf £ 105) and the volume fraction of Au nanoparticles (0 % £ j £ 10 %). It is shown that adding nanoparticles to the base fluid delays the onset of convection. Contrary to what is argued by many authors, we show, with numerical simulations, that the use of nanofluids can reduce the heat transfer instead of increasing it.
Keywords: Rayleigh-Bénard natural convection, water-Au nanofluid, heat transfer, numerical modelling
Published in DKUM: 10.07.2015; Views: 884; Downloads: 92
.pdf Full text (282,00 KB)
This document has many files! More...

7.
Fatigue behaviour of 42CrMo4 steel under contact loading
Péter Göncz, Rok Potočnik, Srečko Glodež, 2010, original scientific article

Abstract: The presented paper describes the experimental determination of fatigue crack growth parameters for high strength low-alloy steel 42CrMo4. The experiments were performed according to the ASTM E647 standard and the parameters of the Paris equation (C and m) were determined. Test specimens were subjected to impulsive cyclic tensile loading on a testing machine. During that the fatigue crack propagation was monitored as a function of elapsed fatigue cycles. Taking these experimental results into account the fatigue crack growth rates at different stress-intensity factor ranges was determined. To consider the variable material properties of the slewing bearing ring trough depth, specimens of different hardnesses were tested. Beside the experimental result a 2D contact fatigue crack propagation model is also presented. This model can be used for the simulation of surface initiated contact fatigue crack propagation on the roller slewing bearing's raceway. As a computational example the results of a finite element method contact fatigue crack propagation simulation are presented.
Keywords: crack propagation, slewing bearings, numerical modelling, experiments
Published in DKUM: 07.06.2012; Views: 1651; Downloads: 78
URL Link to full text

8.
Numerical and experimental study of water/oil emulsified fuel combustion in a diesel engine
Niko Samec, Breda Kegl, Robert W. Dibble, 2002, original scientific article

Abstract: Numerical and experimental studies were made on some of the chemical and physical properties of wateržoil emulsified fuel (W/OEF) combustion characteristics. Numerical investigations of W/OEF combustion's chemical kinetic aspects have been performed by simulation of water/n-heptane mixture combustion, assuming a model of a homogenous reactor's concentric shells. The injection and fuel spray characteristics are analyzed numerically also in order to study indirectly the physical effects of water present in diesel fuel during the combustion process. The experimental results of W/OEF combustion in the DI diesel engine are also presented and discussed. The results of engine testing in a broad field of engine loads and speeds have shown a significant pollutant emission reduction with no worsening of specific fuel consumption.
Keywords: internal combustion engines, Diesel engines, combustion, emissions, numerical modelling
Published in DKUM: 01.06.2012; Views: 1921; Downloads: 99
URL Link to full text

9.
A computational model for determination of service life of gears
Srečko Glodež, Matjaž Šraml, Janez Kramberger, 2002, original scientific article

Abstract: A computational model for determination of service life of gears in regard to bending fatigue in a gear tooth root is presented. The fatique process leading to tooth breakage is divided into crack initiation and crack propagation period. The strain-life method in the framework of the FEM-methods has been used to determine the number of stress cycles Ni required for the fatique crack initiation, where it is assumed that the crack is initiated at the point of the largest stresses in a gear tooth root. The simple Paris equations is then used for the further simulation of the fatigue crack growth. The functional relationship between the stress intensity factor and crack length K=f(a), which is needed for determination ofthe required number of loading cycles Np for a crack propagation from the initial to the critical length, is obtained using displacement correlation method in the framework of the FEM-method. The total number of stress cycles N for the final failure to occur is then a sum of Ni and Np. The model is used for determination of service life of real spur gear made from through-hardened steel 42CrMo4, where required material parameters have been determined previously by the appropriate test specimens.
Keywords: machine elements, fatigue, fatigue crack growth, numerical modelling, gears, service life
Published in DKUM: 01.06.2012; Views: 1833; Downloads: 107
URL Link to full text

10.
Simplified modeling of detailed chemistry description in premixed turbulent combustion by BEM
Niko Samec, Leopold Škerget, 2002, original scientific article

Abstract: A simplified modeling of premixed turbulent combustion based on detailed chemical kinetics and simplified mixing is presented. The main conservation equations of mass energy and species mass have been solved numerically applying boundary doma integral method for diffusive coonective transport equation with constant and linear source term. The model has been applied to the particular case of the premixed charge in a spark-ignited internal combustion engine. The model predictions are in good agreement with measurements.
Keywords: combustion, turbulence, numerical modelling, boundary element method, internal combustion engines
Published in DKUM: 01.06.2012; Views: 1013; Downloads: 78
URL Link to full text

Search done in 0.16 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica