| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 82
First pagePrevious page123456789Next pageLast page
1.
Comparative evaluation of corrosion resistance of AISI 316L and Ti6Al4V dental materials under simulated inflammatory conditions
Mojca Slemnik, 2025, original scientific article

Abstract: Titanium and its alloys, as well as stainless steel, are commonly used materials for implants in the human body due to their excellent biocompatibility, corrosion resistance, and mechanical properties. However, the long-term performance of these materials in the oral cavity can be affected by the complex oral environment, including the ingestion of food, beverages, and oral hygiene products, leading to the presence of various ions, pH fluctuations, and inflammatory processes. In this study, the corrosion properties of two biocompatible materials, Ti6Al4V and AISI 316L stainless steel, are investigated under varying oral inflammatory conditions. Using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), SEM, and EDS analysis, the corrosion behaviour of both materials was analysed in environments simulating mild and severe inflammation. Results indicate that Ti6Al4V exhibits superior corrosion resistance at low H2O2 concentrations mimicking mild inflammation, with significantly lower corrosion rates compared to AISI 316L. However, at higher H2O2 concentrations, which correspond to severe inflammation, AISI 316L shows better resistance despite its susceptibility to pitting corrosion. Both alloys show reduced passivation after 72 h, with corrosion products accumulating on the surface after 96 h, contributing to repassivation. These results emphasise the need for individualized material selection in dental applications based on a patient’s susceptibility to oral inflammation.
Keywords: corrosion, EIS, inflammatory conditions, titanium, stainless steel, dental materials
Published in DKUM: 19.05.2025; Views: 0; Downloads: 0
.pdf Full text (4,10 MB)

2.
Faculty of Mechanical Engineering : Research Guide
2025, guide book

Abstract: The publication presents an overview of research activities and research achievements at the Faculty of Mechanical Engineering. The following research areas are presented: Energy, process and environmental engineering, Construction and design, Materials technology, Mechanics, Production engineering, Textile materials and design, and Fundamental and general areas. Individual laboratories and centers of the faculty present their research equipment, service offerings for industry, collaborations with companies and other institutions, the most prominent publications, patents, national and international projects and the most important research achievements.
Keywords: energy, construction and design, process and environmental engineering, materials technology, mechanics, production engineering, textile materials and design
Published in DKUM: 01.04.2025; Views: 0; Downloads: 2
.pdf Full text (18,43 MB)
This document has many files! More...

3.
Dynamics and pretransitional effects in C60 fullerene nanoparticles and liquid crystalline dodecylcyanobiphenyl (12CB) hybrid system
Sylwester Rzoska, Szymon Starzonek, Joanna M. Łoś, Aleksandra Drozd-Rzoska, Samo Kralj, 2020, original scientific article

Abstract: The report shows the strong impact of fullerene C60 nanoparticles on phase transitions and complex dynamics of rod-like liquid crystal dodecylcyanobiphenyl (12CB), within the limit of small concentrations. Studies were carried out using broadband dielectric spectroscopy (BDS) via the analysis of temperature dependences of the dielectric constant, the maximum of the primary loss curve, and relaxation times. They revealed a strong impact of nanoparticles, leading to a ~20% change of dielectric constant even at x = 0.05% of C60 fullerene. The application of the derivative-based and distortion-sensitive analysis showed that pretransitional effects dominate in the isotropic liquid phase up to 65 K above the clearing temperature and in the whole Smectic A mesophase. The impact of nanoparticles on the pretransitional anomaly appearance is notable for the smectic–solid phase transition. The fragility-based analysis of relaxation times revealed the universal pattern of its temperature changes, associated with scaling via the “mixed” (“activated” and “critical”) relation. Phase behavior and dynamics of tested systems are discussed within the extended Landau–de Gennes–Ginzburg mesoscopic approach.
Keywords: nanoparticles, liquid crystals, soft materials, fullerenes, dielectric spectroscopy, phase transitions, dynamics
Published in DKUM: 10.03.2025; Views: 0; Downloads: 3
.pdf Full text (1,89 MB)
This document has many files! More...

4.
5.
Nanodelci hitozana kot potencialni protimikrobni premaz
Zdenka Peršin Fratnik, Uroš Maver, Metod Kolar, Olivera Šauperl, Lidija Fras Zemljič, Boštjan Vihar, 2024, original scientific article

Abstract: Namen študije je bil ugotoviti protimikrobno učinkovitost hitozanskih nanodelcev v primerjavi s hitozansko raztopino in sled temu njihovo učinkovito rabo na medicinskih tekstilnih materialih.
Keywords: chitosan, nanoparticles, antimicrobial activity, coatings, medical textile materials
Published in DKUM: 07.01.2025; Views: 0; Downloads: 24
.pdf Full text (903,83 KB)
This document has many files! More...
This document is also a collection of 1 document!

6.
Review of potential drug-eluting contact lens technologies
Tina Lovrec-Krstič, Kristjan Orthaber, Uroš Maver, Tomislav Šarenac, 2023, review article

Abstract: The field of ophthalmology is expanding exponentially, both in terms of diagnostic and therapeutic capabilities, as well as the worldwide increasing incidence of eye-related diseases. Due to an ageing population and climate change, the number of ophthalmic patients will continue to increase, overwhelming healthcare systems and likely leading to under-treatment of chronic eye diseases. Since drops are the mainstay of therapy, clinicians have long emphasised the unmet need for ocular drug delivery. Alternative methods, i.e., with better compliance, stability and longevity of drug delivery, would be preferred. Several approaches and materials are being studied and used to overcome these drawbacks. We believe that drug-loaded contact lenses are among the most promising and are a real step toward dropless ocular therapy, potentially leading to a transformation in clinical ophthalmic practice. In this review, we outline the current role of contact lenses in ocular drug delivery, focusing on materials, drug binding and preparation, concluding with a look at future developments.
Keywords: contact lens materials, advanced ocular drug delivery, dropless ocular therapy, drug-laden contact lens
Published in DKUM: 03.12.2024; Views: 0; Downloads: 1
.pdf Full text (4,80 MB)
This document has many files! More...

7.
Development of novel hybrid TPMS cellular lattices and their mechanical characterisation
Nejc Novak, Oraib Al-Ketan, Matej Borovinšek, Lovre Krstulović-Opara, Reza Rowshan, Matej Vesenjak, Zoran Ren, 2021, original scientific article

Abstract: Uniform lattices composed of one type of lattice structure repeated periodically have been extensively investigated in literature for their mechanical and physical properties. Their promising properties, which include a desirable combination of high strength, stiffness and toughness, suggest that hybrid structures made of two or more lattice types can exhibit even more advantageous and desired properties. In this work, the mechanical properties of hybrid cellular structures designed using implicit functions are investigated both experimentally and numerically. Two proposed samples are investigated comprised of a Gyroid and a Diamond unit cells hybridised linearly and radially. First, a finite element computational model was utilised in LS-DYNA to capture the mechanical properties of the additively manufactured constituent lattices (i.e., Gyroid and Diamond) made of stainless steel 316L and tested under dynamic and quasi-static loading conditions. The model was validated for three different relative densities. Then, the validated computational model was then tested to predict the mechanical behaviour of the proposed hybrid lattices. Finally, the proposed hybrid lattices were fabricated and mechanically tested to obtain their mechanical properties. A good agreement between experimental and computational results was achieved. The validated computational models will be used to evaluate other designs of TPMS lattices and their crashworthiness performance for protective equipment applications.
Keywords: cellular materials, triply periodical minimal surface, hybrid lattices, experimental testing, computational modelling, multi-morphology
Published in DKUM: 27.11.2024; Views: 3; Downloads: 11
.pdf Full text (3,99 MB)
This document has many files! More...

8.
The thermomechanical, functional and biocompatibility properties of a Au–Pt–Ge alloy for PFM dental restorations
Peter Majerič, Minja Miličić Lazić, Dijana Mitić, Marko Lazić, Ema Krdžović Lazić, Gyöngyi Vastag, Ivan Anžel, Vojkan Lazić, Rebeka Rudolf, 2024, original scientific article

Abstract: A high-noble Au–Pt–Ge porcelain-fused-to-metal (PFM) dental alloy without the known adverse metallic elements and with the addition of germanium (Ge) was produced as a more cost-effective alternative to other precious alloying metals, with investigations for determining the functionality and clinical use of this alloy. The thermomechanical, biocompatibility, durability, workability and economic characteristics of the produced dental alloy were investigated. These properties were investigated with in vitro biocompatibility testing on human gingival fibroblasts (HGFs); static immersion testing for metal ion release; DSC analysis; hardness, tensile testing, density and coefficient of thermal expansion (CTE) measurements; metallographic and SEM/EDX microstructure investigations; and finally with the production of a test PFM dental bridge. The results of the thermomechanical testing showed alloy properties suitable for dental restorations and clinical use, with somewhat lower mechanical properties, making the alloy not suitable for extensive multiunit fixed restorations. The microstructure investigations showed segregations of Ge in the homogeneous alloy matrix, which reduce the alloy’s mechanical properties. The produced PFM dental bridge showed excellent workability of the alloy in a dental laboratory setting, as well as a high standard of the final dental restoration. The ion release was negligible, well below any harmful quantities, while the cell viability examination showed significantly higher viability ratings on polished alloy samples as compared to as-cast samples. The results showed that a dental substructure in direct contact with oral tissue and fluids should be highly polished. The performed investigations showed that the produced PFM dental alloy is suitable for clinical use in producing high-quality dental restorations with high biocompatibility for patients prone to metal allergies
Keywords: noble metal dental alloys, metal–ceramic alloys, materials testing, biocompatibility testing
Published in DKUM: 25.11.2024; Views: 0; Downloads: 8
.pdf Full text (11,75 MB)
This document has many files! More...

9.
Defining a sustainable supply chain for buildings Off-Site envelope thermal insulation solutions : proposal of a methodology to investigate opportunities based on a context analysis
Miriam Benedetti, Carlos Herce, Matteo Sforzini, Tiziana Susca, Claudia Toro, 2024, review article

Abstract: External wall thermal insulation is one of the most effective solutions on the market to increase energy efficiency in the built environment. Off-Site Construction (OSC), through better control of the various parameters involved, can bring important advantages, such as the reduction of construction time, the improvement of product and process quality, etc. In the last years, the rapidly growing demand for thermal insulation systems, stimulated also by tax incentives, has generated a unique situation in Italy compared to the rest of Europe, also leading to a considerable fragmentation of the supply chain with several players involved (component and system manufacturers, distributors, and installers). The complexity of such context makes Italy an extremely challenging and insightful case study for a supply chain and sustainability study, also considering the fact that the energy efficiency of the Italian building stock represents a crucial challenge to achieve the country's energy saving goals since 40% of final energy consumption derives from buildings and 75% of the building stock presents a low energy performance (energy labels E, F and G). This article presents both an analysis of the Italian market of manufacturers of building envelope thermal insulation solutions, highlighting the different players in the supply chain in terms of number, type, and marketed products and solutions, and a focus on sustainable and recycled materials. The study also aims to define a methodology to investigate the state of play and opportunities for industrialisation of this market and its bottlenecks. In the article, a questionnaire is proposed to collect information and opinions on the spread of OSC and the perception of companies and professionals regarding the advantages and disadvantages of industrializing the sector. A first validation of the survey is presented in the form of industrial focus groups.
Keywords: supply chain sustainability, industrial energy efficiency, off-site construction, construction industrialisation, sustainable building materials, modular buildings
Published in DKUM: 01.10.2024; Views: 0; Downloads: 3
URL Link to file
This document has many files! More...

10.
Investigating the influence of reflective materials on indoor thermal environment and solar reflectance in buildings
Jihui Yuan, Yasuhiro Shimazaki, Masaki Tajima, Shaoyu Sheng, Zhichao Jiao, Marko Bizjak, 2024, original scientific article

Abstract: This in-depth study explores the intricate dynamics of reflective materials, emphasizing their impact on the indoor thermal environment and urban heat island (UHI) mitigation. Examining diffuse highly reflective (DHR), general reflective (GR), and retro-reflective (RR) materials on a simplified building model during summer days, the research utilizes outdoor experiments to analyze air and surface temperatures, as well as solar radiation. Prioritizing key metrics—mean radiant temperature (MRT), operative temperature (OT), and solar reflectance (ρ)—the study uncovers nuanced distinctions in DHR, GR, and RR materials. Solar reflectance calculations consistently show higher values for DHR and RR materials compared to GR material, highlighting reflectance's pivotal role in influencing surface temperatures and indoor thermal environment. When evaluating the impact of exterior wall materials on building temperatures, RR material with a 76% reflectance performs similarly to DHR material (82%). Notably, with a 6% lower reflectance in RR, the temperature contrast between external and internal walls is only about 1.5 °C at its maximum, underscoring RR's effectiveness as an outer wall material for UHI mitigation and building energy conservation, surpassing both DHR and GR materials.
Keywords: urban heat island, reflective materials, indoor thermal environment, solar reflectance, simplified building model
Published in DKUM: 23.08.2024; Views: 110; Downloads: 9
.pdf Full text (4,82 MB)

Search done in 0.1 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica