1. Nano and micro-structural complexity of nematic liquid crystal configurationsAndreja Jelen, Maha Zid, Kaushik Pal, Remya Rajan Renuka, Dejvid Črešnar, Samo Kralj, 2024, original scientific article Abstract: Of our interest are frustration-driven pattern generating mechanisms in systems which in bulk equilibrium display spatially homogeneous long-range orientational order in absence of perturbations. As testbed material, we select thermotropic nematic liquid crystals. In bulk, they exhibit weakly discontinuous order-disorder phase transformation on varying temperature where the ordered nematic phase features spatially uniform axial order along an arbitrary symmetry breaking direction. However, due to continuous symmetry breaking (CSB) the established order is extremely susceptible to various perturbations which are in real systems in general always present. We theoretically illustrate how diverse complex patterns could be excited. Particularly intriguing configurations could appear if topological defects are present that could be generated via CSB. Our analysis is based on a relatively simple Lebwohl-Lasher-type model in which we could get analytical insight into phenomena of our interest. Using it we illustrate history dependent early stage isotropic-nematic phase evolution and final patterns in presence of "impurities" (e.g., nanoparticles). We show how characteristic effective interaction characteristics predict qualitatively different emerging patterns. Our analysis is based on CSB which is ubiquitous in nature. Consequently, demonstrated mechanisms are expected to manifest also in other condensed matter systems whose ordered phase is formed via CSB. We illustrate how kinetics and impurities could impact key structural properties of the systems of our interest. Keywords: continuous symmetry breaking, patterns, topological defects, nematic liquid crystals Published in DKUM: 05.12.2024; Views: 0; Downloads: 2 Full text (9,33 MB) This document has many files! More... |
2. Electric field driven reconfigurable multistable topological defect patternsSaša Harkai, Bryce S. Murray, Charles Rosenblatt, Samo Kralj, 2020, original scientific article Abstract: Topological defects appear in symmetry breaking phase transitions and are ubiquitous throughout Nature. As an ideal testbed for their study, defect configurations in nematic liquid crystals (NLCs) could be exploited in a rich variety of technological applications. Here we report on robust theoretical and experimental investigations in which an external electric field is used to switch between predetermined stable chargeless disclination patterns in a nematic cell, where the cell is sufficiently thick that the disclinations start and terminate at the same surface. The different defect configurations are stabilized by a master substrate that enforces a lattice of surface defects exhibiting zero total topological charge value. Theoretically, we model disclination configurations using a Landau-de Gennes phenomenological model. Experimentally, we enable diverse defect patterns by implementing an in-house-developed atomic force measurement scribing method, where NLC configurations are monitored via polarized optical microscopy. We show numerically and experimentally that an “alphabet” of up to 18 unique line defect configurations can be stabilized in a 4 × 4 lattice of alternating �=±1 surface defects, which can be “rewired” multistably using appropriate field manipulation. Our proof-of-concept mechanism may lead to a variety of applications, such as multistable optical displays and rewirable nanowires. Our studies also are of interest from a fundamental perspective. We demonstrate that a chargeless line could simultaneously exhibit defect-antidefect properties. Consequently, a pair of such antiparallel disclinations exhibits an attractive interaction. For a sufficiently closely spaced pair of substrate-pinned defects, this interaction could trigger rewiring, or annihilation if defects are depinned. Keywords: line defects, topological defects, nematic liquid crystals, electric field, atomic force microscopy, numerical techniques, polarized optical microscopy Published in DKUM: 18.11.2024; Views: 0; Downloads: 2 Full text (3,79 MB) This document has many files! More... |
3. Curvature potential unveiled topological defect attractorsLuka Mesarec, Aleš Iglič, Veronika Kralj-Iglič, Wojciech Góźdź, Epifanio Giovanni Virga, Samo Kralj, 2021, original scientific article Abstract: We consider the theoretical and positional assembling of topological defects (TDs) in effectively two-dimensional nematic liquid crystal films. We use a phenomenological Helfrich–Landau–de Gennes-type mesoscopic model in which geometric shapes and nematic orientational order are expressed in terms of a curvature tensor field and a nematic tensor order parameter field. Extrinsic, intrinsic, and total curvature potentials are introduced using the parallel transport concept. These potentials reveal curvature seeded TD attractors. To test ground configurations, we used axially symmetric nematic films exhibiting spherical topology. Keywords: topological defects, nematic liquid crystals, nematic shells, geometric potentials, curvature Published in DKUM: 30.09.2024; Views: 0; Downloads: 7 Full text (3,69 MB) This document has many files! More... |
4. Stable assemblies of topological defects in nematic orientational orderArbresha Hölbl, Luka Mesarec, Juš Polanšek, Aleš Iglič, Samo Kralj, 2023, original scientific article Abstract: We considered general mechanisms enabling the stabilization of localized assemblies of topological defects (TDs). There is growing evidence that physical fields represent fundamental natural entities, and therefore these features are of interest to all branches of physics. In general, cores of TDs are energetically costly, and consequently, assemblies of TDs are unfavorable. Owing to the richness of universalities in the physics of TDs, it is of interest to identify systems where they are easily experimentally accessible, enabling detailed and well-controlled analysis of their universal behavior, and cross-fertilizing knowledge in different areas of physics. In this respect, thermotropic nematic liquid crystals (NLCs) represent an ideal experiment testbed for such studies. In addition, TDs in NLCs could be exploited in several applications. We present examples that emphasize the importance of curvature imposed on the phase component of the relevant order parameter field. In NLCs, it is represented by the nematic tensor order parameter. Using a simple Landau-type approach, we show how the coupling between chirality and saddle splay elasticity, which can be expressed as a Gaussian curvature contribution, can stabilize Meron TDs. The latter have numerous analogs in other branches of physics. TDs in 2D curved manifolds reveal that the Gaussian curvature dominantly impacts the assembling and stabilization of TDs. Furthermore, a strong enough curvature that serves as an attractor for TDs is a respective field that could be imposed in a fast enough phase transition. Assemblies of created TDs created in such a disordered environment could be stabilized by appropriate impurities. Keywords: topological defects, nematic liquid crystals, Gaussian curvature, topological charge Published in DKUM: 17.07.2023; Views: 421; Downloads: 24 Full text (6,14 MB) This document has many files! More... |
5. Impact of curvature on nematic topological defectsLuka Mesarec, 2018, doctoral dissertation Abstract: Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems' microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. There are strong evidences that in physics the fields are fundamental entities of nature and not particles. If this is the case then topological defects (TDs) might play the role of fundamental particles. An adequate testing ground to study and gain fundamental understanding of TDs are nematic liquid crystals. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes.
We analyze the impact of extrinsic and intrinsic curvature on positions of topological defects (TDs) in two-dimensional (2D) nematic films. We demonstrate that both these curvature contributions are commonly present and are expected to be weighted by comparable elastic constants. A simple Landau-de Gennes approach in terms of tensor nematic order parameter is used to numerically demonstrate impact of the curvatures on position of TDs on 2D ellipsoidal nematic shells. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs (defect,antidefect) on curved surfaces. Furthermore, we estimate a critical depinning threshold to form pairs (defect,antidefect) using the electrostatic analogy. Finally, we show how one could efficiently switch among qualitatively different structures by using a relative volume of ordered shells, which represents a relatively simple naturally accessible control parameter.
In doctoral thesis, we developed theoretical model of erythrocyte membrane by using a hybrid Helfrich-Landau type mesoscopic approach, taking into account in-plane membrane ordering. We demonstrate that the derived extrinsic membrane energy term, which strongly depends on the local orientations of the molecules, is essential for the predicted broadening of the range of the relative volumes corresponding to the stable discocyte shapes, which is otherwise very narrow if only intrinsic curvature energy term dominates. Keywords: Topological defects, Continuum fields, Nematic liquid crystals, Biological membranes, Nematic shells, Landau-de Gennes formalism, Topological charge, Nanoparticles, Gaussian curvature, Electrostatic analogy, Intrinsic curvature, Extrinsic curvature, Crystal growth nucleation, Relative
volume Published in DKUM: 09.03.2018; Views: 2391; Downloads: 242 Full text (23,66 MB) |
6. Effective topological charge cancelation mechanismLuka Mesarec, Wojciech Góźdź, Aleš Iglič, Samo Kralj, 2016, original scientific article Abstract: Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems’ microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant “impurities” (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy. Keywords: topological defects, topological charge, numerical studies, orientational ordering, nematic liquid crystals, liquid crystalline shells, biological membranes, nanoparticles, Gaussian curvature, electrostatic analogy, annihilation, topology Published in DKUM: 23.06.2017; Views: 1141; Downloads: 350 Full text (2,15 MB) This document has many files! More... |
7. Numerical study of membrane configurationsLuka Mesarec, Miha Fošnarič, Samo Penič, Veronika Kralj-Iglič, Samo Kralj, Wojciech Góźdź, Aleš Iglič, 2014, original scientific article Abstract: We studied biological membranes of spherical topology within the framework of the spontaneous curvature model. Both Monte Carlo simulations and the numerical minimization of the curvature energy were used to obtain the shapes of the vesicles. The shapes of the vesicles and their energy were calculated for different values of the reduced volume. The vesicles which exhibit inplane ordering were also studied. Minimal models have been developed in order to study the orientational ordering in colloids coated with a thin sheet of nematic liquid crystal (nematic shells).The topological defects are always present on the surfaces with the topology of a sphere.The location of the topological defects depends strongly on the curvature of the surface. We studied the nematic ordering and the formation of topological defects on vesicles obtained by the minimization of the spontaneous curvature energy. Keywords: biological membranes, vesicles, spontaneous curvature model, Monte Carlo simulations, nematic shells, orientational ordering, topological defects Published in DKUM: 14.06.2017; Views: 1285; Downloads: 396 Full text (4,38 MB) This document has many files! More... |
8. Fingered core structure of nematic boojumsSamo Kralj, Riccardo Rosso, Epifanio Giovanni Virga, 2008, original scientific article Abstract: Using the Landau-de Gennes phenomenological approach, we study the fine biaxial core structure of a boojum residing on the surface of a nematic liquid crystal phase. The core is formed by a negatively uniaxial finger, surrounded by a shell with maximal biaxiality. The characteristic finger's length and the shell's width are comparable to the biaxial correlation length. The finger tip is melted for topological reasons. Upon decreasing the surface anchoring strength below a critical value, the finger gradually leaves the bulk and it is expelled through the surface. Keywords: physics, liquid crystals, nematic crystals, line defects, surface phenomena Published in DKUM: 07.06.2012; Views: 2110; Downloads: 113 Link to full text |
9. Finite-size effects on order reconstruction around nematic defectsSamo Kralj, Riccardo Rosso, Epifanio Giovanni Virga, 2010, original scientific article Abstract: By use of the Landau-de Gennes phenomenological theory, we study the texture of a nematic liquid crystal confined within a hybrid cell. Precisely, we consider cylindrically symmetric solutions containing topological defects dictated by appropriate boundary conditions. We focus our attention on cells whose dimensions are comparable with the biaxial correlation length ▫$xi_b$▫. For such severe confinements the order reconstruction (OR) configuration could be stable. Its structural details reflect the balance among boundary-enforced frustration, elastic penalties, and finite-size effects. In particular, we analyze the interplay between finite-size effects and topological defects. We show that defects are always pinned to the negatively (planar) uniaxial sheet of the OR structure. The presence of a ring defect can dramatically increase the critical threshold below which the OR structure is stable. Keywords: physics, liquid crystals, nematic crystals, nematic defects, structural transitions Published in DKUM: 07.06.2012; Views: 2658; Downloads: 99 Link to full text |