| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 12
First pagePrevious page12Next pageLast page
1.
Adjoints of solution semigroups and identifiability of delay differential equations in Hilbert spaces
Miklavž Mastinšek, 1994, original scientific article

Abstract: The paper deals with semigroups of operators associated with delay differential equation: ▫$dot{x}=Ax(t)+L_1x(t-h)+L_2x_t$▫, where ▫$A$▫ is the infinitesimal generator of an analytic semigroup on a Hilbert space ▫$X$▫ and ▫$L_1$▫, ▫$L_2$▫ are densely defined closed operators in ▫$X$▫ and ▫$L^2(-h,0;X)$▫ respectively. The adjoint semigroup of the solution semigroup of the delay differential equation is characterized. Eigenspaces of the generator of the adjoint semigroup are studied and the identifiability of parameters of the equation is given.
Keywords: matematika, analiza, navadne diferencialne enačbe, polgrupe operatorjev, diferencialne enačbe z zakasnitvijo, polgrupe rešitev, adjungirane polgrupe, prepoznavnost
Published: 10.07.2015; Views: 295; Downloads: 24
URL Link to full text

2.
3.
4.
5.
6.
7.
8.
9.
10.
Search done in 0.13 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica