1. Ocenjevanje starosti osebe na osnovi digitalnih posnetkov z uporabo konvolucijskih nevronskih mrežTilen Krel, 2021, master's thesis Abstract: Magistrsko delo se ukvarja z ocenjevanjem starosti osebe na osnovi digitalnih posnetkov z uporabo konvolucijskih nevronskih mrež. Razvit in implementiran je bil lasten model konvolucijske nevronske mreže za ocenjevanje starosti osebe iz digitalnega posnetka. Kot osnova za naš model je bila uporabljena in modificirana obstoječa arhitektura konvolucijske nevronske mreže VGG-Face, namenjena razpoznavanju obrazov. Za učenje in testiranje sta bili uporabljeni bazi podatkov IMDB-WIKI in FG-NET. Na bazi podatkov IMDB-WIKI je bila dosežena povprečna napaka med dejansko in ocenjeno starostjo 6,7 leta, na bazi podatkov FG-NET pa z validacijsko metodo »izpusti-eno-osebo« izračunana povprečna napaka med dejansko in ocenjeno starostjo 3,9 leta. Dobljeni rezultati so primerljivi oziroma le malo zaostajajo za najuspešnejšimi metodami za ocenjevanje starosti osebe z digitalnega posnetka. Na tej osnovi se naš model ocenjuje kot primeren za uporabo v produkcijskih rešitvah. Keywords: računalniški vid, konvolucijske nevronske mreže, globoko učenje, ocenjevanje starosti Published: 17.02.2021; Views: 62; Downloads: 15
Full text (1,01 MB) |
2. |
3. Razpoznavanje človeških emocij na digitalnih posnetkih s pomočjo konvolucijskih nevronskih mrežAleš Pernat, 2020, master's thesis Abstract: V magistrskem delu smo se ukvarjali z razvrščanjem šestih osnovnih človeških emocij in nevtralnega izraza s pomočjo digitalnih posnetkov in konvolucijskih nevronskih mrež. Pregledali smo področje razpoznavanja človeških emocij in natančno preučili konvolucijske nevronske mreže. Implementirali smo več modelov sodobnih konvolucijskih nevronskih mrež, ob tem pa razvili tudi lastne modele. Uporabili smo knjižnico Tensorflow in programski jezik Python. Naše predlagane rešitve smo preizkusili na prosto dostopnih podatkovnih zbirkah CK+, MMI in JAFFE. Slike iz podatkovnih zbirk smo obogatili z zrcaljenjem in rotiranjem, tako da smo dobili večjo količino podatkov. Za validiranje smo uporabili pristop, neodvisen od subjekta, in petkratno navzkrižno validacijo. Najboljši rezultati razvrščanja z našimi predlaganimi metodami so bili 91,65 % na zbirki CK+, 59,08 % na zbirki MMI in 67,86 % na zbirki JAFFE. Rezultati na zbirki CK+ so primerljivi z rezultati sorodnih del, na preostalih dveh zbirkah pa je uspešnost razvrščanja z našimi pristopi bistveno slabša od rezultatov sorodnih del. Keywords: človeške emocije, konvolucijske nevronske mreže, digitalne slike, strojno učenje Published: 04.01.2021; Views: 64; Downloads: 19
Full text (1,30 MB) |
4. Zaznava oljnih madežev v multispektralnih satelitskih slikahMarko Kužner, 2020, undergraduate thesis Abstract: V tem diplomskem delu predstavljamo analizo metod za zaznavanje oljnih madežev na vodni površini s satelitom TRISAT. Primerjali smo metodo največjega verjetja in nevronsko mrežo. Algoritma smo učili in testirali nad dvema različnima bazama podatkov. Z rezultati smo pokazali, da je metoda največjega verjetja računsko in prostorsko bolj spremenljiva pri manjšem številu vhodnih podatkov, medtem ko se je nevronska mreža izkazala za natančnejšo. S primerjavo najboljših izbranih kanalov nad bazama podatkov smo pokazali, da so si izbrani kanali podobni. Rezultate tega diplomskega dela lahko uporabimo za izvedbo algoritma nad referenčnimi slikami satelita TRISAT. Keywords: satelit TRISAT, metoda največjega verjetja, nevronske mreže, zaznavanje olja, kratkovalovni infrardeči spekter Published: 01.12.2020; Views: 268; Downloads: 0
Full text (1,57 MB) |
5. Klasifikacija besedila s prenosnim učenjemJure Žerak, 2020, master's thesis Abstract: Magistrsko delo ima namen preizkusiti metodo prenosnega učenja na obdelavi naravnega jezika in jo primerjati s klasičnimi metodami učenja nevronskih mrež, metodo LSTM. V delu sta uporabljena opisna metoda za teoretični in eksperiment za praktični del dela. V slednjem smo ugotovili, da je metoda prenosnega učenja na majhni količini podatkov bolj točna od klasičnih metod, vendar za to potrebuje več časa. Delo primerja prednaučeni model Bert in klasično metodo LSTM, zato je priporočljivo primerjati rezultate tudi z drugimi prednaučenimi modeli in klasičnimi metodami. Keywords: nevronske mreže, prenosno učenje, NLP, PyTorch, LSTM Published: 01.12.2020; Views: 55; Downloads: 17
Full text (1,99 MB) |
6. Klasifikacija z utežem agnostičnimi nevronskimi mrežamiMarko Mlakar, 2020, master's thesis Abstract: V magistrskem delu je predstavljena metoda iskanja utežem agnostičnih nevronskih mrež, ki temelji na genetskem algoritmu, imenovanem NeuroEvolution of Augmenting Topologies (NEAT). Evalviranje genomov z vzorčenjem uteži iz fiksne uniformne množice naključnih vrednosti minimizira pomembnost uteži, s čimer je poudarek le na optimizaciji topologije. To omogoča utežem agnostičnim nevronskim mrežam opravljanje različnih nalog brez predhodnega učenja utežnih vrednosti. Naša implementacija je bila prilagojena za povezovanje z odprtokodno knjižnico Scikit-learn, ki smo jo javno objavili v obliki PyPi paketa. V eksperimentalnem delu smo se osredotočili na primerjavo evolucijskih in utežem agnostičnih nevronskih mrež na primeru reševanja klasifikacijskih problemov. Rezultate smo evalvirali z uporabo statističnih metod, ki so pokazale, da utežem agnostične nevronske mreže proizvedejo več skritih nevronov kot evolucijske, vendar uspejo doseči primerljivo točnost zgolj s pravilno topologijo, brez optimizacije uteži. Keywords: utežem agnostične nevronske mreže, klasifikacija, nevroevolucija, NEAT Published: 01.12.2020; Views: 93; Downloads: 26
Full text (3,89 MB) |
7. Napovedovanje intervencij z uporabo umetne inteligenceRok Rutnik, 2020, master's thesis Abstract: Namen naloge je izdelava matematičnih modelov napovedovanja za odločitve upravljanja, osnovane na inteligentnih, kvantitativnih analizah. Magistrsko delo obravnava področje napovedovanja števila interventnih dogodkov Gasilske brigade Maribor s pomočjo umetne inteligence in regresijskih modelov. Učne množice podatkov so bile pridobljene iz baz podatkov SPIN in ARSO, obdelane v programskem jeziku Python, modeli napovedovanja pa programirani v programskem paketu MATLAB. Cilj naloge je bil izdelava štirih regresijskih algoritmov, umetne nevronske mreže LSTM in NARX za napovedovanja dogodkov, njihove rezultate pa preko metrik ocenjevanja natančnosti medsebojno primerjati. Rezultati napovedovanja nekaterih učnih množic so bili zaradi majhnih korelacijskih povezav slabi, zato teh dogodkov nismo mogli napovedovati. Požarne intervencije in naravne nesreče so dale dovolj dobre rezultate korelacijskih analiz, zato so bile uporabljene v izgradnji nevronskih mrež. Glede na rezultate zbranih modelov menimo, da so nevronske mreže primernejše za napovedovanje interventnih dogodkov kot regresijski modeli. Keywords: napovedovanje, umetna inteligenca, nevronske mreže, strojno učenje, regresija Published: 11.11.2020; Views: 81; Downloads: 22
Full text (7,00 MB) |
8. Strojno učenje računalniškega igralca v igri HavannahNino Serec, 2020, undergraduate thesis Abstract: V zadnjih letih je bil na področju umetne inteligence z uporabo okrepitvenega učenja nevronskih mrež dosežen preboj pri sposobnostih računalnika za igranje iger na deski, kot je Go, pri katerih je bil človek doslej močnejši nasprotnik. V diplomskem delu raziščemo algoritem igranja iger AlphaZero, ki kombinira tehnike preiskovanja dreves Monte Carlo in okrepitvenega učenja nevronskih mrež. Algoritem začne brez posebnega predznanja o dobrih strategijah, vendar se moč algoritma s postopkom učenja, ki se ponavlja iterativno, konstantno povečuje.
V diplomskem delu opišemo in implementiramo osnovno obliko AlphaZero za igranje igre Havannah. Naučimo več različic modela nevronskih mrež, kjer vsak naslednik premaga svojega prednika in postane prvak. S tem pokažemo, da se lahko računalniški igralec uči igranja igre Havannah samo s podanimi pravili igre, tako da je sposoben premagati povprečnega človeškega igralca. Keywords: igra Havannah, drevesno preiskovanje Monte Carlo, nevronske mreže, okrepitveno učenje, tabula rasa Published: 11.11.2020; Views: 164; Downloads: 26
Full text (1,29 MB) |
9. |
10. Zasnova in razvoj sistema za rudarjenje mnenja, s pomočjo besednih vektorjev in nevronskih mrežMiha Hozjan, 2020, master's thesis Abstract: V zadnjih letih je, predvsem s porastom socialnih medijev, analiza sentimenta postala ena izmed glavnih vej obdelave naravnega jezika. Intenzivno se uporablja na različnih področjih, med drugim tudi v političnem prostoru. V sklopu magistrske naloge smo izdelali sistem za rudarjenje mnenja, ki uspešno razvrsti komentarje, zapisane v slovenskem jeziku, v tri kategorije, in sicer pozitivne, negativne in nevtralne. Po proučitvi strokovne in znanstvene literature ter razvoju in primerjavi različnih modelov nam je uspelo pokazati, da lahko z uvedbo besednih vektorjev v kombinaciji z nevronskimi mrežami občutno izboljšamo delovanje takšnega sistema. Keywords: analiza sentimenta, besedni vektorji, nevronske mreže, obdelava naravnega jezika Published: 03.11.2020; Views: 45; Downloads: 14
Full text (1,22 MB) |