| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 1 / 1
First pagePrevious page1Next pageLast page
1.
Response of monocyte-derived dendritic cells to rapidly solidified nickel-titanium ribbons with shape memory properties
Sergej Tomić, Rebeka Rudolf, Mihael Brunčko, Ivan Anžel, V. Savić, Miodrag Čolić, 2012, original scientific article

Abstract: Ni-Ti Shape Memory Alloys (SMAs) have attracted considerable attention as biomaterials for medical devices. However, the biocompatibility of Ni-Ti SMAs is often unsatisfactory due to their poor surface structure. Here we prepared Rapidly Solidified (RS) Ni-Ti SMA ribbons by melt-spinning and their surface was characterised by Augerelectron spectroscopy, X-ray photoelectron spectrometry and scanning electron microscopy. The biocompatibility of the produced ribbons and their immunomodulatory properties were studied on human monocyte-derived dendritic cells (MoDCs). We showed that melt-spinning of Ni-Ti SMAs can form a thin homogenous oxide layer, which improves their corrosion resistance and subsequent toxicity to MoDCs. Ni-Ti RS ribbons stimulated the maturation of MoDCs, as detected by changes in the cells' morphology and increased expression of HLA-DR, CD86, CD40 and CD83 molecules. However, Ni-Ti RS ribbons enhanced the tolerogenic properties of immature MoDCs, which produced higher levels of IL-10 and IL-27, driving the differentiation of IL-10- and TGF-β-producing CD4+T cells. On the other hand, in the presence of lipopolysaccharide, an important pro-inflammatory biomolecule, Ni-Ti RS ribbons enhanced the allostimulatory and Th1 polarising capacity of MoDCs, whereas the production of Th2 and Th17 cytokines was down-regulated. In conclusion, Ni-Ti RS ribbons possess substantial immunomodulatory properties on MoDCs. These findings might be clinically relevant, because implanted Ni-Ti SMA devices can induce both desired and adverse effects on the immune system, depending on the microenvironmental stimuli.
Keywords: nickel-titanium alloy, biocompatibility, cytokines, immunomodulation, monocyte-derived dendritic cells
Published: 01.06.2012; Views: 973; Downloads: 212
.pdf Full text (1,35 MB)
This document has many files! More...

Search done in 0.03 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica