1.
Preučevanje sekundarne strukture proteinov z računalniškimi simulacijami molekularne dinamike in nevronskimi mrežami : doktorska disertacijaMatic Broz, 2024, doctoral dissertation
Abstract: V doktorski disertaciji smo s pomočjo najsodobnejših računalniških metod simulacij molekulske dinamike, nevronskih mrež in molekulskega sidranja preučevali in pojasnili sekundarno strukturo proteinov pod vplivom specifičnih mutacij, strukturo proteinov pod vplivom mikrovalovnega sevanja, napovedovali dihedralne kote fi in psi proteinskega ogrodja in analizirali vlogo nevropilinov pri različnih fizioloških in patoloških procesih.
V prvem delu doktorske disertacije smo s pomočjo simulacij molekulske dinamike podrobno preučili vpliv polimorfizma rs4880 (mutacija Ala16Val) na sekundarno strukturo mitohondrijske tarčne sekvence človeškega encima mangan superoksidne dismutaze. Simulacije so pokazale, da alaninska varianta ohranja stabilno α-heliksno strukturo, kar je ugodno za pravilen transport v mitohondrije. Nasprotno pa se α-heliks valinske variante razgradi, kar vodi do tvorbe β-lista in s tem potencialno moti transport. Naši rezultati podpirajo predhodne eksperimentalne ugotovitve, da ima alaninska verzija višjo aktivnost tega encima v mitohondrijih. Ugotovitve pomembno prispevajo k razumevanju povezave med strukturo in funkcijo mitohondrijske tarčne sekvence ter vpliva polimorfizma Ala16Val na aktivnost manganove superoksidne dismutaze.
V drugem delu doktorske disertacije smo razvili enostaven model globokega učenja za napovedovanje dihedralnih kotov fi (ϕ) in psi (ψ) proteinskega ogrodja zgolj na podlagi primarne strukture beljakovin. Model popolnoma povezanega nevronskega omrežja z drsečim oknom velikosti 21 aminokislinskih ostankov je dosegel zadovoljivo natančnost pri napovedovanju ϕ kotov in nekoliko nižjo, a še vedno sprejemljivo natančnost pri napovedovanju ψ kotov. Pokazali smo, da je mogoče tudi z enostavnim modelom nevronskih mrež doseči visoko natančnost pri napovedovanju dihedralnih kotov proteinskega ogrodja.
V tretjem delu doktorske disertacije smo s pristopom molekularne dinamike preučevali vpliv mikrovalovnega sevanja na zvijanje beljakovin in možnost napačnega zvitja. Rezultati so pokazali, da mikrovalovno segrevanje povzroči pomik proti bolj kompaktnim konformacijam proteinov, kar se odraža v predvsem v manjših radijih sukanja. Mikrovalovno sevanje pa ni imelo večjega vpliva na sekundarne strukture beljakovin na skali 200 nanosekund. Naše delo predstavlja pomemben prispevek k razumevanju posledic izpostavljenosti beljakovin mikrovalovnemu sevanju.
V četrtem delu doktorske disertacije smo temeljito raziskali vlogo nevropilinov v različnih fizioloških in patoloških procesih, kot so COVID-19, rak, nevropatska bolečina, srčno-žilne bolezni in diabetes. Pregledali smo terapevtske možnosti modulacije nevropilinov in predstavili serijo antagonistov, znanih kot zaviralcev signalizacije VEGF-A in rasti tumorjev. Ugotovitve predstavljajo trdne temelje za nadaljnji razvoj učinkovitih zdravil za klinično uporabo, s poudarkom na majhnih molekulskih antagonistih.
Disertacija predstavlja izvirni znanstveni prispevek na področju molekularnega modeliranja, globokega učenja in strukturne biologije z neposredno uporabnostjo pri razumevanju in zdravljenju različnih bolezni ter razvoju terapevtskih strategij.
Keywords: molekulska dinamika, nevronske mreže, struktura proteinov, dihedralni koti, mikrovalovno sevanje, nevropilini
Published in DKUM: 09.10.2024; Views: 0; Downloads: 42
Full text (18,05 MB)