| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 10 / 13
First pagePrevious page12Next pageLast page
Complementary assessment of commercial photoluminescent pigments printed on cotton fabric
Selestina Gorgieva, Natalija Virant, Alenka Ojstršek, original scientific article

Abstract: The presented study focuses on photoluminescent pigments applied on cotton fabric by a screen-printed procedure using polydimethylsiloxane (PDMS) as a binder. Microscopic data depicts irregular shapes and relatively wide size distribution (3–80 µm) of pigments. Regarding composition,the Energy-Dispersive X-ray (EDX) and Fourier Transform Infrared (FTIR) spectroscopy data complement findings suggesting the presence of Eu-doped strontium aluminate in the yellow-green,calcium aluminate in the violet pigment, and metal oxides in the blue pigment.
Keywords: photoluminescent pigments, cotton fabric, screen-printing, photoluminescent PDMS coating, confocal microscopy, spectroscopy, printed cotton fabrics, pigments
Published in DKUM: 08.04.2021; Views: 411; Downloads: 32
.pdf File (10,19 MB)

A geostress measurement method based on an integrated drilling and optical microscopic imaging system
Jinchao Wang, Chunying Wang, Zengqiang Han, Yiteng Wang, Xinjian Tang, 2018, original scientific article

Abstract: Conventional geostress measurement methods are limited by deficiencies including the measurable depth, the complexity, and the long duration of operation. To address these problems and achieve the measurement of geostress in deep wells under conditions of complex high pressures and high temperatures, we propose a new measurement method for geostress based on an integrated drilling and optical microscopy system. Its innovative integrated structure eliminates the problems associated with complex procedures and depth limits, and avoids rock creep caused by long delays, significantly improving the accuracy and range of the measurements. It works by using microscopic imaging and direct contact probes to capture the changes of a borehole’s cross-sectional outlines before and after stress relief. The resulting images are analyzed with search circles to obtain the positions of probe apices, which can be fitted into ellipses that describe the outlines, and calculate the state of the stress. The validity and accuracy of the method was verified by in-door tests and field applications in the ZK1 borehole. The results show that: (1) the integrated system can be used to measure micrometer-grade deformations; (2) the searchcircle approach can accurately obtain the positions of probe apices; and (3) the stress measurement method based on the system is accurate and feasible.
Keywords: geostress, probe, optical microscopy, measurement while drilling, search circle
Published in DKUM: 11.10.2018; Views: 985; Downloads: 398
.pdf Full text (1,26 MB)
This document has many files! More...

Determination of microstructural changes by severely plastically deformed copper-aluminum alloy : optical study
Nebojša Romčević, M. Gilić, Ivan Anžel, Rebeka Rudolf, Miodrag Mitrić, M. Romčević, B. Hadžić, D. Joksimović, Milica Petrović Damjanović, Matija Kos, 2014, original scientific article

Abstract: Our work deals with the problem of producing a complex metal-ceramic composite using the processes of internal oxidation (IO) and severe plastic deformation. For this purpose, Cu-Al alloy with 0.4wt.% of Al was used. IO of sample serves in the first step of the processing as a means for attaining a fine dispersion of nanosized oxide particles in the metal matrix. Production technology continues with repeated application of severe plastic deformation (SPD) of the resulting metal matrix composite to produce the bulk nanoscaled structural material. SPD was carried out with equal channel angular pressing (ECAP), which allowed that the material could be subjected to an intense plastic strain through simple shear. Microstructural characteristics of one phase and multiphase material was studied on internally oxidized Cu with 0.4wt.% of Al sample composed of one phase copper-aluminum solid solution in the core and fine dispersed oxide particles in the same matrix in the mantle region. In this manner AFM, X-ray diffraction and Raman spectroscopy were used. Local structures in plastically deformed samples reflect presence of $Cu$, $CuO$, $Cu_2O$, $Cu_4O_3$ or $Al_2O_3$ structural characteristics, depending on type of sample.
Keywords: metals, oxides, atomic force microscopy, Raman spectroscopy, microstructure
Published in DKUM: 08.08.2017; Views: 1142; Downloads: 138
.pdf Full text (596,63 KB)
This document has many files! More...

Microstructure of NiTi orthodontic wires observations using transmission electron microscopy
Janko Ferčec, Darja Jenko, Borut Buchmeister, Franc Rojko, Bojan Budič, Borut Kosec, Rebeka Rudolf, 2014, original scientific article

Abstract: This work presents the results of the microstructure observation of six different types of NiTi orthodontic wires by using Transmission Electron Microscopy (TEM). Within these analyses the chemical compositions of each wire were observed in different places by applying the EDS detector. Namely, the chemical composition in the orthodontic wires is very important because it shows the dependence between the phase temperatures and mechanical properties. Micro- structure observations showed that orthodontic wires consist of nano-sized grains containing precipitates of Ti2Ni and/or TiC. The first precipitated Ti2Ni are rich in Ti, while the precipitated TiC is rich in C. Further investigation showed that there was a difference in average grain size in the NiTi matrix. The sizes of grains in orthodontic wires are in the range from approximately 50 to 160 nm and the sizes of precipitate are in the range from 0,3 μm to 5 μm.
Keywords: orthodontic wires, nickel-titanium orthodontic wire, NiTi wire, shape memory alloys, SMA wires, microstructure, transmission electron microscopy, TEM, average grain size
Published in DKUM: 03.07.2017; Views: 945; Downloads: 103
.pdf Full text (869,15 KB)
This document has many files! More...

Synthesis of NiTi/Ni-TiO[sub]2 composite nanoparticles via ultrasonic spray pyrolysis
Peter Majerič, Rebeka Rudolf, Ivan Anžel, Jelena Bogovic, Srečko Stopić, Bernd Friedrich, 2015, original scientific article

Abstract: In this paper we present the production of NiTi/Ni-TiO2 composite nanoparticles via the synthesis method called ultrasonic spray pyrolysis (USP). The precursor solution for the synthesis of spherical NiTi particles was prepared from an orthodontic wire with a chemical composition of Ni (amount fraction x = 51.46 %) and Ti (x = 48.54 %). TEM microscopy, in combination with EDX analyses, was used for a detailed characterization of the obtained NiTi nanoparticles. The results showed the nanoparticle sizes ranging from 60 nm to 600 nm, depending on the parameters of the production procedure. This showed the versatility of the new USP synthesis procedure, proving its usefulness for different materials and applications.
Keywords: ultrasonic spray pyrolysis, NiTi/Ni-TiO2 composite nanoparticles, characterization, Transmission electron microscope (TEM), TEM microscopy
Published in DKUM: 23.03.2017; Views: 1082; Downloads: 110
.pdf Full text (1,13 MB)
This document has many files! More...

Au-nanoparticle synthesis via ultrasonic spray pyrolysis with a separate evaporation zone
Peter Majerič, Bernd Friedrich, Rebeka Rudolf, 2015, original scientific article

Abstract: Some experiments were conducted in connection with the gold-nanoparticle production in an effort to produce a more accurate model for determining the gold-nanoparticle synthesis with a modified ultrasonic spray pyrolysis (USP). As previous experi- ments with gold nanoparticles yielded nanoparticles of various shapes (spherical, triangular, cylindrical, etc.), a focus on synthesizing only spherical nanoparticles is underway, as a mixture of different shapes is difficult to characterize and utilize. One of the factors for the particle formation is droplet evaporation. In an attempt to produce the optimum conditions for droplet evaporation with the solvent diffusion and precipitation, a separate furnace and a separate reaction-gas inlet were used. This modification separates the evaporation stage from the reaction stage, compared to the standard USP set-up. Using relatively low temperatures, from 60 °C up to 140 °C, for the evaporation stage provides for more time and better conditions for the diffusion of the solvent into the center of a droplet and a higher probability of forming a spherical particle.
Keywords: nanotehnology, ultrasonic spray pyrolysis, gold, aerosol, TEM microscopy
Published in DKUM: 14.03.2017; Views: 1185; Downloads: 445
.pdf Full text (752,54 KB)
This document has many files! More...

Influence of temperature on the surface enhanced Raman scattering spectra of 2, 4, 6 - trinitrotoluene
Simon Hamler, 2015, master's thesis

Abstract: The detection of trace amounts of explosive like trinitrotoluene (TNT) is an important issue in the prevention of terrorist attacks. Surface enhanced Raman scattering (SERS) spectroscopy has become a powerful detection technique for identification of minute amounts of analytes. This thesis presents data of TNT in solution, deposited on a nanostructured gold surface, which is heated up to 60 °C. The observed changes in the microscopy images and in the SERS spectra are explained by evaporation, phase transition and decomposition of the TNT molecules. The impact of temperature dependence of SERS effect is studied on a chemisorbed 4-Nitrothiophenol monolayer. To minimize the evaporation of TNT molecules, a self-assembled monolayer of mercaptohexanol (MCH) was inserted between plasmonic surface and TNT.
Keywords: surface enhanced Raman spectroscopy, explosives, temperature dependence, microscopy, evaporation, phase transition, decomposition
Published in DKUM: 05.11.2015; Views: 1519; Downloads: 72
.pdf Full text (2,25 MB)

Raziskave interakcij med celicami in biopolimernimi materiali z naprednimi eksperimentalnimi metodami kot osnova za študij biokompatibilnosti polimerov
Rok Podlipec, 2015, doctoral dissertation

Abstract: The last two decades have been determined by the development in the field of tissue engineering. Beside the constant progress in new biomaterials and scaffold fabrication methods, currently the main focus is to understand scaffolds biocompatibility. In our thesis, physical aspects of scaffold biocompatibility were studied by correlating molecular to macro scale physical properties of scaffolds with cell attachment and cell growth. In order to focus on scaffold physical properties, scaffolds were prepared by the same chemical composition of natural polymer gelatin excluding biochemical effects on the cell response. Scaffold with different physical properties were obtained by changing the temperature, pH and crosslinker degree during the cryogelation and populated by the fibroblast cells. Advanced experimental biophysical methods were applied to determine the polymer mobility via electron paramagnetic resonance (EPR) with spin labelling, the scaffold mechanical properties via rheometry, dynamic mechanical analysis (DMA) and nanoindentation using atomic force microscope (AFM) and the scaffold porosity via confocal fluorescence microscopy (CFM). The anisotropy of the molecular mobility of the side chains of polymers in the crosslinked gelatin structure was found to correlate with the initial cell growth (throughout the first week) the best of all the physical properties measured. About five times less efficient cell growth was measured on the scaffolds with highly mobile, spatially nonrestricted dynamics of the polymer side chains, in comparison with cell growth on the scaffolds with the restricted rotational motion of polymers. The result indicates that cells identify and respond to the degree of polymer mobility, where partially immobile phase is necessary for efficient cell attachment and efficient cell growth. So far, the molecular mobility of polymers constituting tissue engineering materials has never been studied thoroughly with respect to its influence on cell response, and therefore may represent a new experimental approach in understanding biocompatibility. To further understand cell-scaffold interaction, the study focused also on the first events during cell attachment - bond formation between the cell surface proteins and the specific binding sites on the material. In our thesis, cell adhesion dynamics was investigated in real-time on the surfaces of gelatin scaffolds with different physical properties using spatially-controlled cell manipulation by the optical tweezers and the confocal fluorescence microscopy detection. Our goal was to elucidate, if the adhesion dynamics can be correlated with cell growth and if it can be dependent on the scaffold polymer molecular mobility. Quantitative characterization of the optical tweezers force applied during cell-scaffold adhesion analysis was done by viscous drag force calibration and dynamic cell sequential trapping of individual cells. The maximal force on a trapped cell not causing the thermal damage was measured up to 200 pN, with nearly linearly increasing force profile across the cell towards the plasma membrane. By submicron spatial resolution of cell manipulation, we managed to quantify probability of cell adhesion, cell adhesion strength and mechanism of cell attachment, including the formation of the membrane tethers, which slow down the adhesion process. Adhesion strength was classified according to the displacement of the attached cell under the force of optical tweezers measured in the direction of the scaffold surface.Cell adhesion was shown to significantly correlate with cell growth in the first days of culture, while the adhesion itself seems to be dependent on the molecular mobility of surface polymers. The result indicates that the interactions during the first seconds may markedly direct further cell response. The developed methodology for cell adhesion analysis on the surfaces of 3D scaffolds serves as a good tool to forecast scaffold biocompatibility.
Keywords: polymer molecular mobility, mechanical response, morphology, scaffold biocompatibility, cell growth, single cell manipulation, cell adhesion dynamics, optical tweezers, electron paramagnetic resonance, dynamical mechanical analysis, nanoindentation, fluorescence microscopy and microspectroscopy
Published in DKUM: 06.10.2015; Views: 1912; Downloads: 148
.pdf Full text (5,95 MB)

Functionalization of AFM tips for use in force spectroscopy between polymers and model surfaces
Tina Maver, Karin Stana-Kleinschek, Zdenka Peršin, Uroš Maver, 2011, original scientific article

Abstract: The following work presents the use of two different methods for the attachment of different functional groups onto the AFM tip surface. Such functionalized tips then allow for further binding of molecules with different origins and natures, thus allowing for use when measuring forces, and the extent of interactions appearing between two model surfaces and in real systems. Force spectroscopy, in combination with chemical force microscopy (CFM), as used in this study, exhibits great potential for chemical sensing in the field of polymer sciences. In modern wound treatment, it is very important to know the type and ranges of interactions between different polymer materials, which are mostly crucial components of the dressings. Precise measurement of these interactions would help to choose those materials that fit together without the use of additional chemical modifications on their surfaces. Such modifications are often the cause of unpredictable complications during the course of wound healing. This same method could also be used for interaction evaluation between chosen polymer materials with biological macromolecules, which appear within the wound during the healing process. Such in vitro testing could be of great help when optimal wound dressing materials need to be chosen in order to alleviate a patient s suffering after application. Scanning electron and atomic force microscopies were used in order to prove the effectiveness and applicability of the used functionalization procedures.
Keywords: atomic force microscopy, chemical force microscopy, force spectroscopy, functionalization of AFM tips
Published in DKUM: 10.07.2015; Views: 1420; Downloads: 106
.pdf Full text (550,85 KB)
This document has many files! More...

Search done in 0.13 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica