| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 9 / 9
First pagePrevious page1Next pageLast page
1.
Development of novel hybrid TPMS cellular lattices and their mechanical characterisation
Nejc Novak, Oraib Al-Ketan, Matej Borovinšek, Lovre Krstulović-Opara, Reza Rowshan, Matej Vesenjak, Zoran Ren, 2021, original scientific article

Abstract: Uniform lattices composed of one type of lattice structure repeated periodically have been extensively investigated in literature for their mechanical and physical properties. Their promising properties, which include a desirable combination of high strength, stiffness and toughness, suggest that hybrid structures made of two or more lattice types can exhibit even more advantageous and desired properties. In this work, the mechanical properties of hybrid cellular structures designed using implicit functions are investigated both experimentally and numerically. Two proposed samples are investigated comprised of a Gyroid and a Diamond unit cells hybridised linearly and radially. First, a finite element computational model was utilised in LS-DYNA to capture the mechanical properties of the additively manufactured constituent lattices (i.e., Gyroid and Diamond) made of stainless steel 316L and tested under dynamic and quasi-static loading conditions. The model was validated for three different relative densities. Then, the validated computational model was then tested to predict the mechanical behaviour of the proposed hybrid lattices. Finally, the proposed hybrid lattices were fabricated and mechanically tested to obtain their mechanical properties. A good agreement between experimental and computational results was achieved. The validated computational models will be used to evaluate other designs of TPMS lattices and their crashworthiness performance for protective equipment applications.
Keywords: cellular materials, triply periodical minimal surface, hybrid lattices, experimental testing, computational modelling, multi-morphology
Published in DKUM: 27.11.2024; Views: 3; Downloads: 11
.pdf Full text (3,99 MB)
This document has many files! More...

2.
The thermomechanical, functional and biocompatibility properties of a Au–Pt–Ge alloy for PFM dental restorations
Peter Majerič, Minja Miličić Lazić, Dijana Mitić, Marko Lazić, Ema Krdžović Lazić, Gyöngyi Vastag, Ivan Anžel, Vojkan Lazić, Rebeka Rudolf, 2024, original scientific article

Abstract: A high-noble Au–Pt–Ge porcelain-fused-to-metal (PFM) dental alloy without the known adverse metallic elements and with the addition of germanium (Ge) was produced as a more cost-effective alternative to other precious alloying metals, with investigations for determining the functionality and clinical use of this alloy. The thermomechanical, biocompatibility, durability, workability and economic characteristics of the produced dental alloy were investigated. These properties were investigated with in vitro biocompatibility testing on human gingival fibroblasts (HGFs); static immersion testing for metal ion release; DSC analysis; hardness, tensile testing, density and coefficient of thermal expansion (CTE) measurements; metallographic and SEM/EDX microstructure investigations; and finally with the production of a test PFM dental bridge. The results of the thermomechanical testing showed alloy properties suitable for dental restorations and clinical use, with somewhat lower mechanical properties, making the alloy not suitable for extensive multiunit fixed restorations. The microstructure investigations showed segregations of Ge in the homogeneous alloy matrix, which reduce the alloy’s mechanical properties. The produced PFM dental bridge showed excellent workability of the alloy in a dental laboratory setting, as well as a high standard of the final dental restoration. The ion release was negligible, well below any harmful quantities, while the cell viability examination showed significantly higher viability ratings on polished alloy samples as compared to as-cast samples. The results showed that a dental substructure in direct contact with oral tissue and fluids should be highly polished. The performed investigations showed that the produced PFM dental alloy is suitable for clinical use in producing high-quality dental restorations with high biocompatibility for patients prone to metal allergies
Keywords: noble metal dental alloys, metal–ceramic alloys, materials testing, biocompatibility testing
Published in DKUM: 25.11.2024; Views: 0; Downloads: 8
.pdf Full text (11,75 MB)
This document has many files! More...

3.
Mechanical behaviour of photopolymer cell-size graded triply periodic minimal surface structures at different deformation rates
Yunus Emre Yilmaz, Nejc Novak, Oraib Al-Ketan, Hacer Irem Erten, Ulas Yaman, Anja Mauko, Matej Borovinšek, Miran Ulbin, Matej Vesenjak, Zoran Ren, 2024, original scientific article

Abstract: This study investigates how varying cell size affects the mechanical behaviour of photopolymer Triply Periodic Minimal Surfaces (TPMS) under different deformation rates. Diamond, Gyroid, and Primitive TPMS structures with spatially graded cell sizes were tested. Quasi-static experiments measured boundary forces, representing material behaviour, inertia, and deformation mechanisms. Separate studies explored the base material’s behaviour and its response to strain rate, revealing a strength increase with rising strain rate. Ten compression tests identified a critical strain rate of 0.7 s−1 for “Grey Pro” material, indicating a shift in failure susceptibility. X-ray tomography, camera recording, and image correlation techniques observed cell connectivity and non-uniform deformation in TPMS structures. Regions exceeding the critical rate fractured earlier. In Primitive structures, stiffness differences caused collapse after densification of smaller cells at lower rates. The study found increasing collapse initiation stress, plateau stress, densification strain, and specific energy absorption with higher deformation rates below the critical rate for all TPMS structures. However, cell-size graded Primitive structures showed a significant reduction in plateau and specific energy absorption at a 500 mm/min rate.
Keywords: cellular materials, triply periodical minimal surface, photopolymer, mechanical properties, strain rate, experimental compressive testing, computer simulations
Published in DKUM: 22.05.2024; Views: 216; Downloads: 29
.pdf Full text (9,33 MB)
This document has many files! More...

4.
Physical regularities in the cracking of nanocoatings and a method for an automated determination of the crack-network parameters
P. O. Maruščak, Vladimir Gliha, Igor Konovalenko, Tomaž Vuherer, Sergey Panin, 2012, professional article

Abstract: The regularities and spatial distribution of multiple cracking of a nanocoating are investigated. It is found that in the cracking zones the relaxation of the stresses accumulated in the coating takes place; moreover, the intensity of its failure is determined by the structural level of defect accumulation. A new algorithm for a digital identification of the elements of a crack network in a nanocoating is proposed, and its adequacy is checked.
Keywords: nanocoatings, cracks, materials testing
Published in DKUM: 10.07.2015; Views: 1167; Downloads: 125
.pdf Full text (260,70 KB)
This document has many files! More...

5.
Fracture toughness of heterogeneous energy components
Zdravko Praunseis, 2012, original scientific article

Abstract: The presence of different microstructures along pre-crack fatigue fronts has important effects on the critical crack tip opening displacement (CTOD). This value is the relevant parameter for the safe servicing of energy components (penstocks). In the case of specimens with a through thickness notch partly in the weld metal, partly in the heat affected zone and partly in the base material, i.e. using the composite notched specimen, the fracture behaviour strongly depends on the portion of ductile base material, its size and the distribution of the mismatching factor along the vicinity of the crack front.
Keywords: fracture toughness, energy materials, experimental testing
Published in DKUM: 10.07.2015; Views: 1969; Downloads: 52
URL Link to full text

6.
Calculation model for pre-stressed bolted joints of slewing bearings
Péter Göncz, Srečko Glodež, 2009, original scientific article

Abstract: The presented paper describes a calculation model for pre-stressed bolted joints used to connect slewing bearings to the adjacent structures. A classical pre-stressed bolted joint calculation model is described and its insufficiencies for direct application on slewing bearings are pointed out. Finally, the suggested stress analysis is done by modelling the most loaded single bolt segment of the slewing bearing assembly, applying the preload and the working load on it. The stress determination in the bolt is done by finite element analysis.
Keywords: preiskava materialov, vijačne zveze, aksialni ležaji, dimenzioniranje, matematični modeli, materials testing, bolted joints, slewing bearings, dimensioning, calculation models
Published in DKUM: 10.07.2015; Views: 2217; Downloads: 101
URL Link to full text

7.
Evaluation of mechanical properties of soft magnetic materials for axial flux permanent magnet synchronous machines
Zdravko Praunseis, Peter Virtič, 2013, original scientific article

Abstract: Accurate determination of real material mechanical properties is important for safe servicing of energy components. The aim of the paper is systematic experimental approach for determination of mechanical properties of high strenght low alloyed steels and mild carbon steel in the rolling, thickness and width direction.
Keywords: soft magnetic materials, mechanical properties, experimental testing
Published in DKUM: 10.07.2015; Views: 2626; Downloads: 54
URL Link to full text

8.
9.
Behaviour of cellular materials under impact loading
Matej Vesenjak, Zoran Ren, Andreas Öchsner, 2008, original scientific article

Abstract: The paper describes experimental and computational testing of regular open-cell cellular structures behaviour under impact loading. Open-cell cellular specimens made of aluminium alloy and polymer were experimentally tested under quasi-static and dynamic compressive loading in order to evaluate the failure conditions and the strain rate sensitivity. Additionally, specimens with viscous fillers have been tested to determine the increase of the energy absorption due to filler effects. The tests have shown that brittle behaviour of the cellular structure due to sudden rupture of intercellular walls observed in quasi-static and dynamic tests is reduced by introduction of viscous filler, while at the same time the energy absorption is increased. The influence of fluid filler on open-cell cellular material behaviour under impact loading was further investigated with parametric computational simulations, where fully coupled interaction between the base material and the pore filler was considered. The explicit nonlinear finite element code LS-DYNA was used for this purpose. Different failure criteria were evaluated to simulate the collapsing of intercellular walls and the failure mechanism of cellular structures in general. The new computational models and presented procedures enable determination of the optimal geometric and material parameters of cellular materials with viscous fillers for individual application demands. For example, the cellular structure stiffness and impact energy absorption through controlled deformation can be easily adapted to improve the efficiency of crash absorbers.
Keywords: mechanics, porous materials, cellular materials, impact loading, mechanical testing, fluid-structure interaction, failure mechanism
Published in DKUM: 31.05.2012; Views: 1923; Downloads: 89
URL Link to full text

Search done in 0.11 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica