| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 32
First pagePrevious page1234Next pageLast page
1.
Absorptive and transformative capacities in nanotechnology innovation systems
Krsto Pandža, Robin Holt, 2007, original scientific article

Abstract: We identify managerial challenges offered by an emergent nanotechnology innovation system in which knowledge is dispersed, asymmetric and contested. We argue the proposed models of knowledge absorption and transformation enhance existing theories of knowledge and emergent technology by recognizing how and why knowledge flows among the actors in emergent technology innovationsystem. We base our argument on combined research evidence from a Delphi study concerning the future of European manufacturing, from which a selected statement has been analyzed, and from analysis of the NanoManufacturing Institute at Leeds University, UK; specifically its work in building ties between different actors associated with nanotechnology. We conclude our paper with suggestions for future research.
Keywords: technology management, nanotehnology, innovation systems, knowledge flows, absorptive capacity, transformative capacity
Published: 31.05.2012; Views: 966; Downloads: 59
URL Link to full text

2.
3.
4.
Encyclopedia of complexity and systems science
dictionary, encyclopaedia, lexicon, manual, atlas, map

Abstract: Encyclopedia of Complexity and Systems Science provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. The science and tools of complexity and systems science include theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, stochastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms. Examples of near-term problems and major unknowns that can be approached through complexity and systems science include: The structure, history and future of the universe; the biological basis of consciousness; the integration of genomics, proteomics and bioinformatics as systems biology; human longevity limits; the limits of computing; sustainability of life on earth; predictability, dynamics and extent of earthquakes, hurricanes, tsunamis, and other natural disasters; the dynamics of turbulent flows; lasers or fluids in physics, microprocessor design; macromolecular assembly in chemistry and biophysics; brain functions in cognitive neuroscience; climate change; ecosystem management; traffic management; and business cycles. All these seemingly quite different kinds of structure formation have a number of important features and underlying structures in common. These deep structural similarities can be exploited to transfer analytical methods and understanding from one field to another. This unique work will extend the influence of complexity and system science to a much wider audience than has been possible to date.
Keywords: cellular automata, complex networks, computational nanoscience, ecological complexity, ergodic theory, fractals, game theory, granular computing, graph theory, intelligent systems, perturbation theory, quantum information science, system dynamics, traffic management, chaos, climate modelling, complex systems, dynamical sistems, fuzzy theory systems, nonlinear systems, soft computing, stochastic processes, synergetics, self-organization, systems biology, systems science
Published: 01.06.2012; Views: 1492; Downloads: 71
URL Link to full text

5.
Databases for technological information systems
Franc Čuš, Bogomir Muršec, 2004, original scientific article

Abstract: Organization of tool management for mixed production includes today, in particular, the computer-supported management and organization of the flow of tools and data on them. The system supports the entire flow of tools in a production process including the tool store management, commissioning, mounting, dismantling and pre-setting of tools. The system contains the management of the tool database with all vital data on tools and ensures adaption of production requirements for meeting the needs for tools. The integral model for the selection of optimal cutting conditions in the computer aided tool management system (TOMS) is proposed. The integration of technological databases and tool management systems is urgently necessary. The target function for the OPTIS programme, worked out by the programme package Microsoft Visual Basic, is selection of optimal cutting conditions from commercial databases with respect to the lowest costs of machining by taking into account the technological limitations of the metal removal process. The newly developed OPTIS programme selects optimal cutting conditions with respect to the tool maker, workpiece material, type of machining, cutting machine, smallest and greatest cutting conditions, tool, data on series, type of clamping and workpiece geometry.
Keywords: machining processes, tool system, manufacturing systems, technological information systems, databases, tool management, machining systems, cutting conditions
Published: 01.06.2012; Views: 1093; Downloads: 55
URL Link to full text

6.
Relational database as a cogitative part of an intelligent manufacturing system
Igor Drstvenšek, Mirko Ficko, Jože Balič, 2004, original scientific article

Abstract: An intelligent manufacturing system is intended to produce one or more subjects that it is designed for in an optimal way. This means that it has to find a proper production process to produce the subject in an optimal way. The manufacturing system can be called "intelligent" when it is able to find applicable optimisation criteria upon its past experiences thus improving its performance in future. Therefore, an intelligent manufacturing system needs capabilities to store data and make decisions upon them. Such a "brain" can be established by a proper design of a technological database and its database management system (DBMS). Examining all constitutive parameters of a work operation a model of a production process organization can be made, which can serve as a basis for a suitable database design. In addition, an application programme that will check the existence and availability of work operations in the database has to be added to the DBMS. What remains are some optimisation criteria upon which we will choose an operation among suitable and available work operations. This task is fulfilled by a genetic algorithm optimisation technique that would consider work operations' data as parameters of optimisation and on this basis search the optimal one out of the set of available operation.
Keywords: production processes, optimisation, relational database, database management systems, production automation, manufacturing system
Published: 01.06.2012; Views: 1073; Downloads: 57
URL Link to full text

7.
8.
9.
10.
Search done in 0.13 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica