| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Innovative solution principles of wave problems in horizontaly layered medias
Andrej Štrukelj, Andrej Umek, Tomaž Pliberšek, 2006, original scientific article

Abstract: The paper presents engineeringly reasonable transformation of surface displacements of horizontally layered half-space. The latter shows in the half-space present types of waves. It is shown that surface waves are expressed through residuums in poles of the integrand and the volume waves are expressed as integrals along corresponding branch cuts. The singularity which always appears in the basic singular solution in elastodynamics is in this case exactly excluded. In the second part of the paper the behaviour of Stonely waves is investigated in greater detail. It is shown that in the case of layers of finite thickness their appearance and velocities depends not onlyon the material characteristics of neighbouring layers but also on their thickness.
Keywords: geomechanics, horizontally layered halfspace, volume waves, surface waves, Green`s function, Stonely waves
Published in DKUM: 17.05.2018; Views: 1523; Downloads: 154
.pdf Full text (613,03 KB)
This document has many files! More...

2.
Green's function for an elastic layer loaded harmonically on its surface
Tomaž Pliberšek, Andrej Štrukelj, Andrej Umek, 2005, original scientific article

Abstract: The Green's function in surface displacement plays an important role in soil structure interaction. In evaluating the Green's function, several difficulties occur because it is formulated in the infinite integral form. This paper outlines a method of analyzing the steady-state dynamic response of an elastic layer subjected to general point load excitation. It is assumed that the load is applied at the surface. The application Hankel integral transform, to the governing differential equations and boundary conditions yields the response displacements at the surface in integral representation. It will be shown that these semi-infinite integrals can be reduced to the integral with the finite range of integration, which can be efficiently taken numerically. The numerical results are presented, which show the efficiency of the developed procedure.
Keywords: civil engineering, geomechanics, soil-structure interaction, layered halfspace, Green's function, elastodynamics
Published in DKUM: 15.05.2018; Views: 1665; Downloads: 103
.pdf Full text (375,59 KB)
This document has many files! More...

Search done in 0.04 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica