| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Perfect codes in direct products of cycles - a complete characterization
Janez Žerovnik, 2008, original scientific article

Abstract: Let ▫$G = times^n_{i=1}C_{ell_i}$▫ be a direct product of cycles. It is known that for any ▫$r le 1$▫, and any ▫$n le 2▫$, each connected component of ▫$G$▫ contains a so-called canonical ▫$r$▫-perfect code provided that each ▫$ell_i$▫ is a multiple of ▫$r^n + (r+1)^n$▫. Here we prove that up to a reasonably defined equivalence, these are the only perfect codes that exist.
Keywords: matematika, teorija grafov, korekcijske kode, direktni produkt grafov, popolne kode, cikli, mathematics, graph theory, error-correcting codes, direct product of graphs, perfect codes, cycles
Published in DKUM: 10.07.2015; Views: 1886; Downloads: 92
URL Link to full text

2.
An almost complete description of perfect codes in direct products of cycles
Sandi Klavžar, Simon Špacapan, Janez Žerovnik, 2006, original scientific article

Abstract: Naj bo ▫$G = times_{i=1}^nC_{ell_i}$▫ direktni produkt ciklov. Dokazano je, da za vsak ▫$r ge 1$▫ in za vsak ▫$n ge 2$▫ velja naslednje. Če je vsak ▫$ell_i$▫ večkratnik od ▫$r^n + (r+1)^n$▫, tedaj vsaka povezana komponenta grafa ▫$G$▫ vsebuje ▫$r$▫-popolno kodo. Po drugi strani je tudi dokazano, da če koda grafa ▫$G$▫ vsebuje izbrano točko in njene lokalno kanonične točke, tedaj je vsak ▫$ell_i$▫ večkratnik od ▫$r^n + (r+1)^n$▫. Nadalje je dokazano, da je ▫$r$▫-popolna koda ▫$(r ge 2)$▫ grafa ▫$G$▫ enolično določena z ▫$n$▫ točkami. Postavljena je domneva, da za ▫$r ge 2$▫ ne obstajajo nobene druge kode v $G$ razen tistih, ki so konstruirane v članku.
Keywords: matematika, teorija grafov, korekcijske kode, direktni produkt grafov, popolne kode, cikli, mathematics, graph theory, error-correcting codes, direct product of graphs, perfect codes, cycles
Published in DKUM: 10.07.2015; Views: 24186; Downloads: 101
URL Link to full text

Search done in 0.06 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica