| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 8 / 8
First pagePrevious page1Next pageLast page
1.
Evolutionary game theory use in healthcare : a synthetic knowledge synthesis
Peter Kokol, Jernej Završnik, Helena Blažun Vošner, Bojan Žlahtič, 2025, review article

Abstract: Background: Evolutionary game theory (EGT), originating from Darwinian competition studies, offers a powerful framework for understanding complex healthcare interactions where multiple stakeholders with conflicting interests evolve strategies over time. Unlike traditional game theory, EGT accounts for bounded rationality and strategic evolution through imitation and selection. Aims and objectives: In our study, we use Synthetic Knowledge Synthesis (SKS) that integrates descriptive bibliometrics and bibliometric mapping to systematically analyze the application of EGT in healthcare. The SKS aimed to identify prolific research topics, suitable publishing venues, and productive institutions/countries for collaboration and funding. Data was harvested from the Scopus bibliographic database, encompassing 539 publications from 2000 to June 2025, Results: Production dynamics is revealing an exponential growth in scholarly output since 2019, with peak productivity in 2024. Descriptive bibliometrics showed China as the most prolific country (376 publications), followed by the United States and the United Kingdom. Key institutions are predominantly Chinese, and top journals include PLoS One and Frontiers in Public Health. Funding is primarily from Chinese entities like the National Natural Science Foundation of China. Bibliometric mapping identified five key research themes: game theory in cancer research, evolution game-based simulation of supply management, evolutionary game theory in epidemics, evolutionary games in trustworthy connected public health, and evolutionary games in collaborative governance. Conclusions: Despite EGT’s utility, significant research gaps exist in methodological robustness, data availability, contextual modelling, and interdisciplinary translation. Future research should focus on integrating machine learning, longitudinal data, and explicit ethical frameworks to enhance EGT’s practical application in adaptive, patient-centred healthcare systems
Keywords: evolutionary games theory, healthcare, complex healthcare systems, synthetic knowledge synthesis, thematic analysis
Published in DKUM: 29.10.2025; Views: 0; Downloads: 4
.pdf Full text (587,94 KB)

2.
The use of AI in software engineering : a synthetic knowledge synthesis of the recent research literature
Peter Kokol, 2024, review article

Abstract: Artificial intelligence (AI) has witnessed an exponential increase in use in various applications. Recently, the academic community started to research and inject new AI-based approaches to provide solutions to traditional software-engineering problems. However, a comprehensive and holistic understanding of the current status needs to be included. To close the above gap, synthetic knowledge synthesis was used to induce the research landscape of the contemporary research literature on the use of AI in software engineering. The synthesis resulted in 15 research categories and 5 themes—namely, natural language processing in software engineering, use of artificial intelligence in the management of the software development life cycle, use of machine learning in fault/defect prediction and effort estimation, employment of deep learning in intelligent software engineering and code management, and mining software repositories to improve software quality. The most productive country was China (n = 2042), followed by the United States (n = 1193), India (n = 934), Germany (n = 445), and Canada (n = 381). A high percentage (n = 47.4%) of papers were funded, showing the strong interest in this research topic. The convergence of AI and software engineering can significantly reduce the required resources, improve the quality, enhance the user experience, and improve the well-being of software developers.
Keywords: software engineering, artificial intelligence, machine learning, synthetic knowledge synthesis, AI
Published in DKUM: 30.07.2025; Views: 0; Downloads: 12
.pdf Full text (1,39 MB)
This document has many files! More...

3.
The role of correspondence analysis in medical research
Bojan Žlahtič, Peter Kokol, Helena Blažun Vošner, Jernej Završnik, 2024, other scientific articles

Abstract: Correspondence analysis (CA) is a multivariate statistical and visualization technique. CA is extremely useful in analyzing either two- or multi-way contingency tables, representing some degree of correspondence between columns and rows. The CA results are visualized in easy-to-interpret “bi–plots,” where the proximity of items (values of categorical variables) represents the degree of association between presented items. In other words, items positioned near each other are more associated than those located farther away. Each bi-plot has two dimensions, named during the analysis. The naming of dimensions adds a qualitative aspect to the analysis. Correspondence analysis may support medical professionals in finding answers to many important questions related to health, wellbeing, quality of life, and similar topics in a simpler but more informal way than by using more complex statistical or machine learning approaches. In that way, it can be used for dimension reduction and data simplification, clustering, classification, feature selection, knowledge extraction, visualization of adverse effects, or pattern detection.
Keywords: public health, medical research, correspondence analysis, synthetic knowledge synthesis, exploratory data analysis, bibliometric
Published in DKUM: 30.07.2025; Views: 0; Downloads: 1
.pdf Full text (614,75 KB)
This document has many files! More...

4.
Machine learning in primary health care : the research landscape
Jernej Završnik, Peter Kokol, Bojan Žlahtič, Helena Blažun Vošner, 2025, review article

Abstract: Background: Artificial intelligence and machine learning are playing crucial roles in digital transformation, aiming to improve the efficiency, effectiveness, equity, and responsiveness of primary health systems and their services. Method: Using synthetic knowledge synthesis and bibliometric and thematic analysis triangulation, we identified the most productive and prolific countries, institutions, funding sponsors, source titles, publications productivity trends, and principal research categories and themes. Results: The United States and the United Kingdom were the most productive countries; Plos One and BJM Open were the most prolific journals; and the National Institutes of Health, USA, and the National Natural Science Foundation of China were the most productive funding sponsors. The publication productivity trend is positive and exponential. The main themes are related to natural language processing in clinical decision-making, primary health care optimization focusing on early diagnosis and screening, improving health-based social determinants, and using chatbots to optimize communications with patients and between health professionals. Conclusions: The use of machine learning in primary health care aims to address the significant global burden of so-called “missed diagnostic opportunities” while minimizing possible adverse effects on patients.
Keywords: primary health care, machine learning, research landscape, synthetic knowledge synthesis
Published in DKUM: 24.07.2025; Views: 0; Downloads: 6
.pdf Full text (887,18 KB)

5.
Artificial intelligence and pediatrics : synthetic knowledge synthesis
Jernej Završnik, Peter Kokol, Bojan Žlahtič, Helena Blažun Vošner, 2024, review article

Abstract: The first publication on the use of artificial intelligence (AI) in pediatrics dates back to 1984. Since then, research on AI in pediatrics has become much more popular, and the number of publications has largely increased. Consequently, a need for a holistic research landscape enabling researchers and other interested parties to gain insights into the use of AI in pediatrics has arisen. To fill this gap, a novel methodology, synthetic knowledge synthesis (SKS), was applied. Using SKS, we identified the most prolific countries, institutions, source titles, funding agencies, and research themes and the most frequently used AI algorithms and their applications in pediatrics. The corpus was extracted from the Scopus (Elsevier, The Netherlands) bibliographic database and analyzed using VOSViewer, version 1.6.20. Done An exponential growth in the literature was observed in the last decade. The United States, China, and Canada were the most productive countries. Deep learning was the most used machine learning algorithm and classification, and natural language processing was the most popular AI approach. Pneumonia, epilepsy, and asthma were the most targeted pediatric diagnoses, and prediction and clinical decision making were the most frequent applications.
Keywords: pediatrics, artificial intelligence, synthetic knowledge synthesis, bibliometrics, machine learning
Published in DKUM: 01.07.2025; Views: 0; Downloads: 8
.pdf Full text (1,71 MB)
This document has many files! More...

6.
Software quality: how much does it matter?
Peter Kokol, 2022, review article

Abstract: Interconnected computers and software systems have become an indispensable part of people’s lives in the period of digital transformation. Consequently, software quality research is becoming more and more critical. There have been multiple attempts to synthesise knowledge gained in software quality research; however, they were focused mainly on single aspects of software quality and did not structure the knowledge holistically. To fill this gap, we harvested software quality publications indexed in the Scopus bibliographic database. We analysed them using synthetic content analysis which is a triangulation of bibliometrics and content analysis. The search resulted in 15,468 publications. The performance bibliometric analysis showed that the production of research publications relating to software quality is currently following an exponential growth trend and that the software quality research community is growing. The most productive country was the United States, followed by China. The synthetic content analysis revealed that the published knowledge could be structured into six themes, the most important being the themes regarding software quality improvement by enhancing software engineering, advanced software testing and improved defect and fault prediction with machine learning and data mining.
Keywords: software engineering, software quality, knowledge synthesis, bibliometrics, synthetic knowledge synthesis
Published in DKUM: 07.04.2025; Views: 0; Downloads: 6
.pdf Full text (1,74 MB)
This document has many files! More...

7.
8.
Research trends in motivation and weight loss : a bibliometric-based review
Uroš Železnik, Peter Kokol, Jasmina Starc, Danica Železnik, Jernej Završnik, Helena Blažun Vošner, 2023, review article

Abstract: Obesity is a complex disease that, like COVID-19, has reached pandemic proportions. Consequently, it has become a rapidly growing scientific field, represented by an extensive body of research publications. Therefore, the aim of this study was to present the research trends in the scientific literature on motivation and weight loss. Because traditional knowledge synthesis approaches are not appropriate for analyzing large corpora of research evidence, we utilized a novel knowledge synthesis approach called synthetic knowledge synthesis (SKS) to generate new holistic insights into obesity research focusing on motivation. SKS is a triangulation of bibliometric analysis, bibliometric mapping, and content analysis. Using it, we analyzed the corpus of publications retrieved from the Scopus database, using the search string TITLE-ABS-KEY((obesity or overweight) and “weight loss” and motiv*) in titles, keywords, and abstracts, without any additional inclusion or exclusion criteria. The search resulted in a corpus of 2301 publications. The United States of America, the United Kingdom, and Australia were the most productive countries. Four themes emerged, namely, weight loss and weight-loss maintenance through motivational interventions, lifestyle changes supported by smart ICT, maintaining sustainable weight with a healthier lifestyle, and weight management on the level of primary healthcare and bariatric surgery. Further, we established that the volume of research literature is growing, as is the scope of the research. However, we observed a regional concentration of research and its funding in developed countries and almost nonexistent research cooperation between developed and less-developed countries.
Keywords: obesity, weight loss, motivation, synthetic knowledge synthesis, bibliometrics, content analysis
Published in DKUM: 05.06.2024; Views: 142; Downloads: 23
.pdf Full text (2,16 MB)
This document has many files! More...

Search done in 0.08 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica