1. Aditivne preslikave z dodatnimi lastnostmi na (pol)prakolobarjih in standardnih operatorskih algebrahBenjamin Marcen, 2016, doctoral dissertation Abstract: V doktorski disertaciji si bomo v uvodu ogledali nekaj osnovnih pojmov, definicij ter pomembnejših rezultatov s področja algebre.
Obravnavali bomo funkcionalne enačbe, ki so v zvezi z odvajanji, centralizatorji ter sorodnimi preslikavami na prakolobarjih, polprakolobarjih in standardnih operatorskih algebrah. Na tem področju že vrsto let delujejo tudi slovenski matematiki, ki so s svojimi rezultati pomembno vplivali na razvoj tega področja. Že v osemdesetih letih sta bila močno dejavna na tem področju J. Vukman, M. Brešar, sledili pa so B. Zalar, B. Hvala,
v novejšem času pa M. Fošner, I. Kosi-Ulbl, D. Benkovič, D. Eremita, A. Fošner, N. Peršin ter N. Širovnik.
Osnovno sredstvo pri reševanju funkcionalnih enačb, ki bodo predstavljene v disertaciji, je teorija funkcijskih identitet, ki jo je leta 2000 v cite{87} predstavil M. Brešar. Leta 2007 pa so jo M. Brešar, M. A. Chebotar in W. S. Martindale III tudi podrobneje predstavili v knjigi cite{MB4}.
Teorija funkcijskih identitiet bo v disertaciji predstavljena skupaj s polinomskimi identitietami ter d-prostimi množicami. Keywords: Aditivna preslikava, linearen operator, odvajanje, jordansko odvajanje, jordansko trojno odvajanje, centralizator, funkcionalna enačba, standardna operatorska algebra, prakolobar, polprakolobar, Banachov prostor, involucija. Published in DKUM: 21.10.2016; Views: 2278; Downloads: 146 Full text (671,60 KB) |
2. Nekateri rezultati o odvajanjih na prakolobarjihAna Marija Varšnik, 2016, undergraduate thesis Abstract: Diplomsko delo z naslovom Nekateri rezultati o odvajanjih na prakolobarjih je razdeljeno na dve poglavji.
Prvo poglavje je namenjeno osnovnim pojmom, ki jih potrebujemo za razumevanje diplomskega dela. V podrazdelkih smo se osredotočili, med drugim, na pojme grupa, kolobar, ideal, algebra, prakolobar, polprakolobar, odvajanje in Jordansko odvajanje.
V drugem poglavju, ki je cilj diplomskega dela, bodo predstavljeni izreki in dokazi, ki jih potrebujemo za dokaz klasičnega rezultata I.N.Hersteina, ki pravi, da je vsako Jordansko odvajanje na prakolobarju s karakteristiko različno od dva odvajanje. Prav tako bomo zapisali Posnerjev izrek, ki pravi, da produkt dveh neničelnih odvajanj na prakolobarju s
karakteristiko različno od dva ni odvajanje. Keywords: kolobar, grupa, prakolobar, polprakolobar, ideal, algebra, odvajanje, Jordansko odvajanje. Published in DKUM: 30.08.2016; Views: 1491; Downloads: 65 Full text (281,58 KB) |
3. On functional equations related to derivations in semiprime rings and standard operator algebrasNejc Širovnik, 2012, original scientific article Abstract: In this paper functional equations related to derivations on semiprime rings and standard operator algebras are investigated. We prove, for example, the following result, which is related to a classical result of Chernoff. Let ▫$X$▫ be a real or complex Banach space, let ▫$L(X)$▫ be the algebra of all bounded linear operators of ▫$X$▫ into itself and let ▫$A(X) subset L(X)$▫ be a standard operator algebra. Suppose there exist linear mappings ▫$D,G colon A(X) to L(X)$▫ satisfying the relations ▫$D(A^3)=D(A^2)A + A^2G(A)$▫, ▫$G(A^3) = G(A^2)A + A^2D(A)$▫ for all ▫$A in A(X)$▫. In this case there exists ▫$B in L(X)$▫ such that ▫$D(A) = G(A) = [A,B]$▫ holds for all ▫$A in A(X)$▫. Keywords: matematika, algebra, prakolobar, polprakolobar, Banachov prostor, standardna operatorska algebra, odvajanje, jordansko odvajanje, jordansko trojno odvajanje, mathematics, algebra, prime ring, semiprime ring, Banach space, standard operator algebra, derivation, Jordan derivation, Jordan triple derivation Published in DKUM: 10.07.2015; Views: 1479; Downloads: 68 Link to full text |
4. On some functional equations arising from (m, n)-Jordan derivations and commutativity of prime ringsMaja Fošner, Joso Vukman, 2012, original scientific article Abstract: The purpose of this paper is to prove the following result. Let ▫$m, n ge 1$▫ be some fixed integers with ▫$m ne n$▫, and let ▫$R$▫ be a prime ring with ▫$(m+n)^2 < text{char} (R)$▫. Suppose a nonzero additive mapping ▫$D : R to R$▫ exists satisfying the relation ▫$(m+n)^2 D(x^3) = m(3m+n) D(x)x^2 + 4mnxD(x)x + n(3n+m)x^2 D(x)$▫ for all ▫$x in R$▫. In this case ▫$D$▫ is a derivation and ▫$R$▫ is commutative. Keywords: matematika, prakolobar, polprakolobar, odvajanje, jordansko odvajanje, levo odvajanje, mathematics, prime ring, semiprime ring, derivation, Jordan derivation, left dderivation, left Jordan derivation, (m, n)-Jordan drivation Published in DKUM: 10.07.2015; Views: 1292; Downloads: 88 Link to full text |
5. On certain functional equation arising from (m, n)-Jordan centralizers in prime ringsNina Peršin, Joso Vukman, 2012, original scientific article Abstract: The purpose of this paper is to prove the following result. Let ▫$m ge 1$▫, ▫$n ge 1$▫ be some fixed integers and let ▫$R$▫ be a prime ring with ▫$text{char}(R)= 0$▫ or ▫$(m+n)^2 < text{char}(R)$▫. Suppose there exists an additive mapping ▫$T colon R to R$▫ satisfying the relation ▫$2(m+n)^2T(x^3) = m(2m+n)T(x)x^2 + 2mnxT(x)x + n(2n+m)x^2T(x)$▫ for all ▫$x in R$▫. In this case ▫$T$▫ is a two-sided centralizer. Keywords: matematika, algebra, kolobar, prakolobar, polprakolobar, Banachov prostor, Hilbertov prostor, algebra vseh omejenih linearnih operatorjev, standardna operatorska algebra, odvajanje, jordansko odvajanje, centralizator, algebra, ring, prime ring, semiprime ring, Banach space, Hilbert space, algebra of all bounded linear operators, standard operator algebra, derivation, Jordan derivation, left (right) centralizer, two-sided centralizer, left (right) Jordan centralizer, (m, n)-Jordan centralizer Published in DKUM: 10.07.2015; Views: 1422; Downloads: 139 Link to full text |
6. Some remarks on derivations in semiprime rings and standard operator algebrasJoso Vukman, 2011, original scientific article Abstract: Identities related to derivations on semiprime rings and standard operator algebras are investigated. We prove the following result which generalizes a classical result of Chernoff. Let ▫$X$▫ be a real or complex Banach space, let ▫$L(X)$▫ be the algebra of all bounded linear operators of ▫$X$▫ into itself and let ▫$A(X) subseteq L(X)$▫ be a standard operator algebra. Suppose there exists a linear mapping ▫$D:A(X) to L(X)$▫ satisfying the relation ▫$2D(A^{3}) = D(A^2)A + A^2D(A) + D(A)A^2 + AD(A^2)$▫ for all ▫$A in A(X)$▫. In this case ▫$D$▫ is of the form ▫$D(A) = AB-BA$▫ for all ▫$A in A(X)$▫ and some fixed ▫$B in L(X)$▫, which means that ▫$D$▫ is a linear derivation. Keywords: matematika, algebra, prakolobar, polprakolobar, Banachov prostor, standardna operatorska algebra, odvajanje, jordansko odvajanje, jordansko trojno odvajanje, mathematics, algebra, prime ring, semiprime ring, Banach space, standard operator algebra, derivation, Jordan derivation, Jordan triple derivation Published in DKUM: 10.07.2015; Views: 1598; Downloads: 131 Link to full text |
7. Characterizing Jordan maps on C [ast]-algebras through zero productsJ. Alaminos, Matej Brešar, J. Extremera, A. R. Villena, 2010, original scientific article Abstract: Naj bosta ▫$A$▫ in ▫$B$▫ ▫$C^ast$▫-algebri, ▫$X$▫ naj bo bistveni Banachov ▫$A$▫-bimodul in naj bosta ▫$T colon A to B$▫ in ▫$S colon A to X$▫ zvezni linearni preslikavi; ▫$T$▫ naj bo surjektivna. Denimo, da je ▫$T(a)T(b) + T(b)T(a) = 0$▫ in ▫$S(a)b + bS(a) + aS(b) + S(b)a = 0$▫, kadarkoli ▫$a, b in A$▫ zadoščata ▫$ab = ba = 0$▫. Dokažemo, da je ▫$T = wPhi$▫ in ▫$S = D + wPsi$▫, kjer ▫$w$▫ leži v centru multiplikatorske algebre ▫$B$▫, ▫$Phicolon A to B$▫ je jordanski epimorfizem, ▫$D colon A to X$▫ je odvajanje in ▫$Psi colon A to X$▫ je bimodulski homomorfizem. Keywords: matematika, teorija operatorjev, ▫$C^ast$▫-algebra, homomorfizem, jordanski homomorfizem, odvajanje, jordansko odvajanje, ohranjevalec ničelnega produkta, mathematics, operator theory, ▫$C^ast$▫-algebra, homomorphism, Jordan homomorphism, derivation, Jordan derivation, zero-product-preserving map Published in DKUM: 10.07.2015; Views: 1114; Downloads: 47 Link to full text |
8. On some equations in prime ringsMaja Fošner, Joso Vukman, 2007, original scientific article Abstract: The main purpose of this paper is to prove the following result. Let ▫$R$▫ be a prime ring of characteristic different from two and let ▫$T : R to R$▫ be an additive mapping satisfying the relation ▫$T(x^3) = T(x)x^{2} - xT(x)x + x^{2} T(x)$▫ for all ▫$x in R$▫. In this case ▫$T$▫ is of the form ▫$4T(x) = qx + xq$▫, where ▫$q$▫ is some fixed element from the symmetric Martindale ring of quotients. This result makes it possible to solve some functional equations in prime rings with involution which are related to bicircular projections. Keywords: matematika, algebra, prakolobar, polprakolobar, funkcijska identiteta, odvajanje, jordansko odvajanje, involucija, bicirkularni projektor, mathematics, algebra, prime ring, semiprime ring, functional identity, derivation, Jordan derivation, involution, bicircular projection Published in DKUM: 10.07.2015; Views: 1398; Downloads: 85 Link to full text |
9. Some functional equations on standard operator algebrasAjda Fošner, Joso Vukman, 2008, original scientific article Abstract: Naj bo ▫$H$▫ kompleksni Hilbertov prostor, ▫$mathcal{B}(H)$▫ algebra vseh omejenih linearnih operatorjev na ▫$H$▫ ter ▫$mathcal{A}(H)$▫ standardna operatorska algebra, zaprta za adjungiranje. Če je ▫$T: mathcal{A}(H) to mathcal{B}(H)$▫ linearna preslikava, ki zadošča identiteti ▫$T(AA^ast A) = T(A)A^ast A - AT(A^ast)A + AA^ast T(A)$▫ za vsak ▫$A$▫ iz ▫$mathcal{A}(H)$▫, potem je ▫$T(A) = AB + BA$▫ za vsak ▫$A$▫ iz A(H), kjer je ▫$B$▫ operator iz ▫$mathcal{B}(H)$▫. Keywords: matematika, algebra, kolobar, prakolobar, polprakolobar, Banachov prostor, Hilbertov prostor, standardna operatorska algebra, odvajanje, jordansko odvajanje, bicirkularni projektor, mathematics, algebra, ring, ▫$^ast$▫-ring, prime ring, semiprime ring, Banach space, Hilbert space, standard operator algebra, derivation, Jordan derivation, bicircular projection Published in DKUM: 10.07.2015; Views: 1406; Downloads: 98 Link to full text |
10. Jordan derivations revisitedMatej Brešar, 2005, original scientific article Abstract: Naj bo ▫$d$▫ jordansko odvajanje iz algebre ▫$mathcal{A}$▫ v ▫$mathcal{A}$▫-bimodul ▫$mathcal{M}$▫. Naš glavni rezultat med drugim pove, da je zožitev ▫$d$▫ na ideal algebre ▫$mathcal{A}$▫ generiran z določenimi višjimi komutatorji v ▫$mathcal{A}$▫ odvajanje. S pomočjo te splošne ugotovitve se zatem ugotovi, da je ob predpostavki različnih dodatnih pogojev ▫$d$▫ nujno odvajanje na ▫$mathcal{A}$▫. Nadalje je prikazanih več primerov pravih jordanskih odvajanj, karakterizirane so ▫$C^ast$▫-algebre s pravimi aditivnimi jordanskimi odvajanji, in poiskana je zveza s sorodnimi problemi o jordanskih homomorfizmih in jordanskimi ▫$mathcal{A}$▫-modulskimi homomorfizmi. Keywords: matematika, algebra, komutator, jordansko odvajanje, odvajanje, mathematics, algebra, communitator, derivation, Jordan derivation Published in DKUM: 10.07.2015; Views: 1146; Downloads: 98 Link to full text |