1.
Determination of viscosity, density and interfacial tension of the carbon dioxide–isopropanol, argon–isopropanol, sulphur hexafluoride–isopropanol binary systems at 313.15 K and 333.15 K and at elevated pressuresDragana Borjan,
Maja Gračnar,
Željko Knez,
Maša Knez Marevci, 2022, original scientific article
Abstract: Viscosity, density, and interfacial tension of three binary systems (carbon dioxide–isopropanol, argon–isopropanol, and sulphur hexafluoride–isopropanol) were measured at temperatures of 313.15 K and 333.15 K and at pressures up to 100 bar for carbon dioxide, and for argon and sulphur hexafluoride up to 500 bar. A vibrating tube densimeter method has been used for density measurements and a variable-volume high-pressure optical view cell with some modifications for the other measurements. The results showed that pressure does not have a high impact on viscosity. Density is found to be a linear function of pressure and temperature and the densities of the investigated binary systems increase with pressure and decrease with temperature. Interfacial tension decreased with the elevated pressure at a constant temperature for all the investigated systems. Accurate prediction of thermodynamic and mass transfer data is fundamental in various engineering and industrial operations to design processes with a higher yield of targeted compounds.
Keywords: viscosity, interfacial tension, carbon dioxide, argon, suplhur hexafluoride, isopropanol
Published in DKUM: 17.08.2023; Views: 358; Downloads: 44
Full text (4,50 MB)
This document has many files! More...